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Abstract 
Energy storage is an important topic as many countries are seeking to increase the amount of electricity 
generation from renewable sources. An open and accessible online database on energy storage technologies was 
created, incorporating a total of 18 energy storage technologies and 134 technology pages with a total of over 
1,800 properties. In this database information on technical maturity, technology readiness level and forecasting 
is included for a number of technologies. However, since the data depends on various sources, it is far from 
complete and fairly unstructured.  The chief challenge in managing unstructured data is understanding 
similarities between technologies. This in turn requires techniques for analyzing local structures in high 
dimensional data. This paper approaches the problem through the use and extension of t-stochastic neighborhood 
embedding (t-SNE). t-SNE embeds data that originally lies in a high dimensional space in a lower dimensional 
space, while preserving characteristic properties. In this paper, the authors extend the t-SNE technique with an 
expectation-maximization method to manage incompleteness in the data. Furthermore, the authors identify some 
technology frontiers and demonstrate and discuss design trade-offs and design voids in the progress of energy 
storage technologies. 

Conference Topic 
Mapping and visualization 

Introduction 
High dimensional datasets are difficult to visualize contrary to two or three dimensional data, 
which can be plotted comparatively easily to demonstrate the inherent structure of the data. 
To aid visualization of the structure of a dataset, a family of algorithms have been devised in 
the literature, which are collectively referred as dimensionality reduction algorithms, of which 
an extensive review can be found in (van der Maaten, Postma, & van den Herik, 2009). 
Among these algorithms t-stochastic neighborhood embedding (t-SNE) is a novel machine 
learning technique that has burgeoning applications. t-SNE maps each data point in a given 
high-dimensional space to a low-dimensional space, typically to a two or three dimensional 
one, for visualization purposes. The algorithm does a non-linear mapping such that similar 
points in the high-dimensional space situated nearby each other in the low-dimensional space 
as well.  
In its first stage, the algorithm constructs a probability distribution over pairs of high-
dimensional points in such a way that similar points have a high probability of being picked. 
In the second stage, it constructs the same probabilities between these points in the low-
dimensional space. Finally the algorithm minimizes the difference between these probabilities 
by minimizing Kullback-Leibler divergence between these two distributions (Van der Maaten 
& Hinton, 2008).   
Inherently, the algorithm preserves the manifold that possibly exist in the high-dimensional 
data and represents this manifold in low-dimensional space. Indeed, this class of 
dimensionality reduction algorithms is called "manifold learning". In comparison to the more 
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conventional, linear dimensionality reduction techniques such as principal component 
analysis (PCA), which finds a linear mapping with an objective to find a subspace where the 
projection of each data point lies as close to the original point as possible, manifold learning 
algorithms preserve the distance between pairs of points. Because of this the manifolds are 
preserved as well, whereas with PCA, clusters that are far from each other in high-
dimensional space might be merged in low dimensional space. 
t-SNE also proves to be useful for technology analysts in monitoring target technologies. 
Technologies such as batteries and storage, which is the target technology in this article, have 
multiple characteristics that develop over time. The problem facing the analysts is that most 
modern data sources are unstructured in character. Unstructured data often indicates that the 
data is of mixed provenance and quality. Furthermore, readily available data is often a mix of 
actual performance results, and forecasts of potential future results. Even when performance 
data is available the data is rarely standardized, and therefore contains incomplete and 
uncertain data.  

Table 1. List of technologies in the database. 

Compressed Air Energy Storage (CAES) Nickel–cadmium (NiCd) battery 
Nickel-metal hydride (NiMh) battery 
Nickel–zinc (NiZn) battery 
Pumped Hydro 

Edison (NiFe) battery 
Flow batteries 
Flywheels 
Hydrogen storage Saltwater (sodium-ion) batteries 
Lead-acid battery Sodium-sulfur (NaS) battery 
Lithium–air (Li-air) battery Supercapacitors 

Lithium-ion (Li-ion) battery 
Superconducting magnetic energy 
storage 

Lithium–sulfur (Li-S) battery Zinc-air battery 
 

Table Table 1 shows typical sources used in appraising technological development. The data 
varies by provenance – it is provided through a mix of academic, commercial, government, 
non-profit and media organizations. Furthermore, the data itself pertains to technologies at 
different stages of development, and in different modes of deployment or development. An 
exemplary data source, discussed in the next section, compiles research and development data 
concerning storage and battery technologies.  
Despite the mixed quality of the data sources, such data is useful and should be incorporated 
into quantitative analyses. In this paper we are primarily concerned with technometric 
approaches to modelling technology (Coccia, 2005). In particular we are concerned with 
utilizing such data to produce technological frontiers. Such frontiers are useful for 
anticipating the future rate of growth, and can be used for developing coordination 
mechanisms such as technology roadmaps (Phaal, Farrukh, & Probert, 2004). 
Evidence and belief need not be mutually incompatible. Bayesian statistical techniques 
acknowledge that data is often collected in an open, rather than controlled, experimental 
framework (Gill, 2004). As a result the necessity for belief prevails in the collection of data. 
There are beliefs concerning the quality of data, the underlying system relationships, and the 
nature and number of underlying cases to be measured. What is significant then is that prior 
beliefs concerning the data are acknowledged, that these beliefs actually encompass the true 
state of the world, and that these beliefs are consistently updated in light of new data. These 
are requirements which are achievable given the appropriate collection, treatment, and 
handling of mixed data.  
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What is required therefore is a technique for handling complexly structured data, for judging 
cases and similarities, and for managing incomplete data. This paper approaches the problem 
through the use and extension of t-stochastic neighborhood embedding (t-SNE). The 
technique is used to develop a non-linear manifold of technological performance, and to use 
this manifold to manage incompleteness in the data. This builds on a long-established 
technique for handing missing data known as the expectation-maximization procedure 
(Dempster, Laird, & Rubin, 1977). In the next section, the paper details a database of storage 
and battery technologies. In the subsequent section, a method is proposed for dealing with this 
semi-structured data, and in specific, for dealing with uncertain and incomplete technological 
information. 

Data Sources 
This work builds upon data collected from Enipedia,1 a website that collects, organizes and 
visualizes open data related to energy systems.  One of the initiatives on the website has 
focused on gathering information related to energy storage technologies. 
Energy storage is an important topic as many countries are seeking to increase the amount of 
electricity generation from renewable sources. An issue with renewable energy is that the 
amount of generation is often variable and can exceed or fall short of the amount that is 
demanded. If there is an excess of production, then not all of the electricity can be fed into the 
grid. If there is an undersupply, then power plants relying on fossil-fuels must often be relied 
on in order to help meet demand. To address this variability, large-scale energy storage could 
be used to store energy during periods of excess renewable electricity production, and then 
supply this energy during periods of increased demand.   
A key problem is that large-scale energy storage does not currently exist, aside from pumped-
storage hydroelectricity plants which can only be built in locations with suitable geography.  
The development of economically feasible large-scale energy storage technologies will be a 
major game changer in the energy sector as it can support a larger integration of renewables 
and decrease reliability on electricity generation from fossil sources. 
The research indicated that a number of energy scenarios and simulations fail to include 
models on energy storage, and lack accurate data on technologies. Also, forecasting is often 
not included, while battery technologies and costs are rapidly evolving. By these needs, an 
accessible and open technology database was created, incorporating a total of 18 energy 
storage technologies and 134 facilities or technology pages with a total of over 1,800 
properties. In this database,2 information on technical maturity, technology readiness level 
and forecasting is included for a number of technologies. 
An overview of sources of technology information on the potential and future demand for 
energy storage indicates that a number of technologies and solutions focus on applications 
with small time-scales, such as frequency and voltage control, load shifting, diurnal storage, 
output smoothing, mobility and reserve grid capacity. Far few technologies and facilities 
focus on providing seasonal and large-scale grid storage. For a number of these technologies, 
installations with a lower technology readiness level have been included to provide some 
numbers on feasibility. 
Developing metrics on comparing these technologies was done through an iterative design 
scheme, incorporating metrics relevant to a range of applications. It was observed that a 
number of technologies cannot be described fully, as information is missing or the ranges in 
which information sources report the information are exceptionally wide. Also, the definitions 
found for some technologies, such as Li-ion, are weaker than those found for other 

                                                
1 http://enipedia.tudelft.nl 
2 http://enipedia.tudelft.nl/wiki/Electricity_Storage 
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technologies. Furthermore, metrics are often made available on a systems level, and 
information on other levels needs to be translated to this system level. 

Table 2. Variable number, name and description 

No. Variable Name Description 
1 Case Case number 
2 Product Product name 
3 Technology Technology type 
4 Year Reference year 
5 Institutional Data Indicator whether observation is institutional   
6 Technology Readiness Level3 Technology maturity level 
7 Investment per Unit Power Investment unit power (EUR/KW) 
8 Investment per Unit Energy Investment cost per unit energy (EUR/KWh) 
9 Efficiency Energy efficiency 
10 Cycles Life span in cycle times 
11 Energy Density Energy density (WH/L) 
12 Power Density Power density (WH/Kg) 
13 LCoE4 Levelized cost of energy 

 

Method 
The chief challenge in managing unstructured data is understanding similarities between 
technologies. This in turn requires techniques for analysing local structures in high 
dimensional data. The technique of choice for this is t-stochastic neighborhood embedding 
(van der Maaten & Hinton, 2008). Finding a manifold which represents the data is useful for 
developing lower dimensional representations of the data. Such a manifold is inherently non-
linear, and by necessity it preserves the local structures in the data at the expense of finding 
any global structures which might be present. For this analysis we adopt an implementation of 
the algorithm created in Matlab (van der Maaten, 2007). 
The t-SNE technique has previously been used in technometrics. Cunningham and Kwakkel 
(2014) investigate a case of electric vehicle and hybrid electric vehicle designs and 
technologies. The case benefitted from the use of a non-linear fitting technique since the 
designs considered differ substantially in fundaments. As a result different designs highlight 
fundamentally distinct kinds of engineering trade-offs. The case also demonstrated a potential 
convergence across multiple technologies. Other patterns of technological evolution on a 
manifold, in addition to convergence, are identified in the paper. 
Other technometric approaches utilize a linear, or quasi-linear technological frontier. Many of 
these approaches also assume a constant rate of technological change as the frontier advances 
over time. These alternative approaches are useful for single technologies with well-
understood morphologies. Such techniques are also suitable for technologies where there are 
suitable indicators of performance, outcome, or merit. The techniques are less useful for 
analyzing broader fields with a heterogeneous base of technology. In such fields different 
technological trade-offs may be at work, and the pace of technological change may be 
discontinuous or punctuated. Indeed, the technologies themselves each may be valued for 
different purposes and outcomes.  

                                                
3 http://en.wikipedia.org/wiki/Technology_readiness_level 
4 http://en.wikipedia.org/wiki/Cost_of_electricity_by_source 
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A desirable method must be suitable for use with diverse data types. Before applying t-SNE to 
the data set of Table 2, the data is first transformed and normalized. Transforming the data 
eases a search for locally similar data points. Furthermore, the normalization of the data helps 
address difficulties associated with variables being measured in different units, potentially 
highly discrepant in scale. The choice is made to take the logarithm of the data whenever the 
data is right skewed. Logistic transformation is used to create more normal-like distributions 
than the actual.  
As previously noted, a major challenge in addressing such data sets is the presence of missing 
data. The principle technique for handling missing data in the statistical literature is known as 
the expectation-maximization procedure. This powerful technique has been extended to 
address the estimation of missing model parameters, as well as missing data, and later become 
a mainstay of machine learning techniques. Modern machine learning procedures are now 
availed of much faster algorithms than expectation-maximization procedures; nonetheless the 
technique has had a powerful effect on the field.  
The expectation-maximization procedure consists of two steps. In the first, or expectation 
step, the missing data is replaced with an expected value. Initially the expected value can be 
set by the mean of the data, or even by replacing the missing data with random values. Then 
in the maximization step, a model of the data is selected and applied. After an initial modeling 
step, further estimates of expected values derived from the model can be derived. These 
expected values become new expected values for additional rounds of the modelling 
procedure. After repeated cycles of expectation and maximization the estimated values 
converge, and the full model of the data is derived. The technique has the benefit of replacing 
missing values with neutral values consistent with an assumed model of the data. The 
technique therefore makes the best use of available data that is possible, rather than excluding 
whole variables or cases because they are incomplete.  
Unstructured data in this domain is not just incomplete, but also uncertain. This is expressed 
with reported ranges of expected performance data. In order to treat this data, an upper bound 
and a lower bound on the data is reported, using two distinct model variables. When the data 
is certain, the upper and lower bound of the variable is identical. In subsequent model runs a 
constraint is imposed on the expectation maximization procedure – the maximum estimated 
upper bound on missing data must be greater than the lower bound. When estimated variables 
do not satisfy this criteria they are either not updated, or both the upper and lower bounds are 
replaced with averages.  
Every point on the manifold estimated by t-SNE is associated with a potential technological 
design. Thus the t-SNE model is generative – it reports the expected best fit to the data, and 
also anticipates new cases or designs which have not yet been reported. Nonetheless, 
technological constraints or other factors may mean that parts of the manifold are not 
populated with new designs. Interpolation using the manifold can proceed following two 
directions. A locally linear direction of change can be interpolated from the data given 
specific examples or cases. Or, a weighted average of surrounding points can be used given 
their relative proximity on the technological manifold.  

Analysis 
The following section details a complete procedure for analysis, as depicted in Figure 
1Figure. The procedure begins with preprocessing the data. The raw data includes lower and 
upper bounds for various attributes. Thus, we made a choice to create two different features 
for each of such variables, e.g., both “Energy density lower bound” and “Energy density 
upper bound” features.  
The next step identifies and masks out the missing data. The process is facilitated by the use 
of data structures (for instance in Python or Matlab) where the missing data is identified using 
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indicator values. A data matrix therefore contains two layers – the first layer stores the data 
itself, and the second layer contains a bit matrix for masking. The bit matrix indicates where 
the data is complete or non-missing, or incomplete and missing.  
 

 
Figure 1. A Flow Chart of the Analysis Procedure. 

Then the features are transformed and normalized to normal-like distributions. The following 
state initializes the missing variables to zero, which is in effect the mean of the normalized 
features. In subsequent iterations of the algorithm more refined estimates of the missing data 
are made. This brings us through the initialization and the first maximization step of the 
algorithm. 
The data is complete, and can now be fitted using the t-SNE algorithm. The major output of 
the algorithm is a set of coordinates for all the cases – in this example there were 118 points.  
Intermediate outputs, such as data coordinates and scatter plots are produced.  
Next, convergence of the algorithm is tested by comparing the current imputed high 
dimensional representation to the high dimensional representation of the previous iteration. 
Obviously this step is skipped for the first iteration.  
If the algorithm has not converged, then pair-wise similarities between the points are 
evaluated as the next procedure. The purpose of this comparison is to determine the closest 
peers of any given technology. The basis for this comparison is the Euclidean distance 
between two points in the three-dimensional space as output from the t-SNE algorithm. The 
distance is then scaled according to the negative exponential of the squared distance between 
the two points. The total distance is then re-scaled to sum to 100% percent to create 
weightings for updating the originally missing variables in the data. The idea here is to 
calculate the new values for the missing data such that these values are closer to the related 
data points implied by the low dimensional data. Using pair-wise distances, a new expected 
set of values is established and finally the high dimensional representation is updated. The 
model converges when there is negligible differences between the consecutive imputed high 
dimensional representations.   

Results and Visualization 
This section discusses some results of the t-SNE analysis, visualizes and interprets some of 
the results, instead of all, due to space limitations, and displays the technologies according to 
their respective dates of introduction or their forecasted date of introduction. These colors 
suggest that the frontier of technological performance is gradually moving outward (to the 
upper right) over time. This is further illustrated in Figure 3. 
Technological development, at least as measured by year of introduction is a somewhat noisy 
variable. Nonetheless, in Figure 3, we can qualitatively place three frontier lines. The first is 
dated 10 1985, the second to 2010, and the third to 2035. It seems plausible given the figure 
that the rate of technological change is higher among battery technologies than it is among 
storage technologies. This is demonstrated by the comparative “fanning out” of the battery 
technologies over time.  
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Figure 2. Technologies Positioned by t-SNE and Colored by Date of Introduction 

 

 
Figure 1. Technological Trajectories 

 
In Figure 3 three technological trajectories are displayed. Changes in technological 
performance, based on benchmark technologies on or near the trajectory are calibrated. Then 
the three trajectories are compared with one another to determine whether there are common 
elements of change across the trajectories. 
Figure 4 describes a potential trade-off in the design and selection of battery and storage 
technologies. In general the trade-off is between the respective cost and advantages of storage 
technologies versus batteries. Storage technologies are more robust, providing more cycles of 
operation at a lower levelized cost of energy. This comes at the cost of having a lower energy 
density, a lower technology readiness level, and a lower efficiency. In contrast battery 
technologies offer more energy density, are more readily available on the market, and operate 
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at a higher level of efficiency. In consequence, batteries are less robust, operating for fewer 
cycles, and requires a higher levelized cost of energy to be paid out.  

 
Figure 4. Design Trade-Offs. 

There are three design voids on the manifold as shown in Figure 5. These are areas in the 
space of potential design which have not been explored. One space, design void 1, occurs 
along the 1985 technological frontier.  The space is sparsely explored, although by 2010 a 
flywheel technology has emerged to occupy the space. The next two voids lie along the 2035 
frontier. Because we are not yet on the 2035 frontier, these voids may be unanticipated 
breakthroughs. Design void 2 is in the space of high performing storage systems, and design 
void 3 is in the space of high performing batteries.  One organization, EASE, anticipates a 
number of 2030 battery technologies on or beyond this frontier.  

 
Figure 5. Design Voids. 

 

1241



 
 

Table 1. Historical and Emerging Designs. 

	
  
Void	
  1	
   Void	
  2	
   Void	
  3	
  

Year	
   2013	
   2012	
   2030	
  
InstitutionalData	
   0.01	
   0.79	
   0.99	
  
TRL	
   8	
   6	
   9	
  
Investment	
  lowerbound	
   1,093	
   69	
   103	
  
Investment	
  upperbound	
   1,149	
   131	
   147	
  
InvestmentEURperKW	
  lowerbound	
   1,244	
   729	
   574	
  
InvestmentEURperKW	
  upperbound	
   1,262	
   1549	
   898	
  
Efficiency	
  lowerbound	
   0.767	
   0.709	
   0.785	
  
Efficiency	
  upperbound	
   0.849	
   0.809	
   0.847	
  
Cycles	
  lowerbound	
   4,265	
   11,306	
   3456	
  
Cycles	
  upperound	
   4,554	
   70,551	
   9804	
  
EnergyDensity	
  lowerbound	
   40	
   5	
   105	
  
EnergyDensity	
  upperbound	
   60	
   11	
   186	
  
Power	
  Density	
  lowerbound	
   131	
   82	
   158	
  
PowerDensity	
  upperbound	
   220	
   210	
   295	
  
LCoE	
  lowerbound	
   0.149	
   0.074	
   0.056	
  
LCoE	
  upperbound	
   0.506	
   0.224	
   0.123	
  

 
Table 3 provides, by interpolation, the performance characteristics of the technologies in the 
three voids mentioned previously.  The exemplary void 1 technology is most likely a battery. 
The year of introduction suggests that there have been too few lower technology exemplars, 
so that the performance here is likely highly overstated. There should likely be a lower power 
and energy densities, and a lower levelized cost of energy. The closest existing technology is 
the “Wemag AG Li-Mn storage plant.” 
The void 2 technology, likely a storage device, should afford dramatically reduced investment 
and investment per kilowatt hour over previous technologies. The cycle times should be up to 
an order of magnitude higher than the void 1 exempla. While the power density may not be 
affected much from its 1985 peer, the energy density is likely to be reduced. The levelized 
cost of energy may be half of the previous levels of the void 1 technology. The year of 
introduction is too early, suggesting still higher energy and power densities over those listed. 
The closest existing technology is an advanced compressed air energy storage device. 
The exemplary void 3 technology is most likely a battery. It will require an order of 
magnitude less unit investment, although the investment in terms of euros per kilowatt may be 
up to one half of previous levels. Cycle times will be improved, and energy densities may be 
doubled or even tripled over previous technologies. Power densities will also be somewhat 
improved. The levelized cost of energy will be three or four times lower than the equivalent 
technologies from 1985. The technology as anticipated is closest to some of the forecasted 
lead-acid battery advances for the year 2030.  

Conclusions  
In this paper, a database of energy storage technologies with various corresponding attributes 
is examined. The authors described a method to manage incompleteness of the data. The 
described method synthesizes t-SNE technique, which is a novel dimensionality reduction 
technique, with long-established expectation-maximization technique. The completed 
database later used for building a technology frontier that shows the progress of technology in 
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time, discussing the design trade-offs in the technology and finally identifying some design 
voids in the progress of the technology. 
The technique described in this paper can be complementary to wide variety of technometrics 
or evolutionary technology dynamics approaches which make use of high dimensional 
technology data.  
The technique performs better especially in visualization than other dimensionality reduction 
applications such as feature selection or feature extraction for two reasons. Firstly, it uses 
expectation maximization to impute the missing variables, which manages the incomplete 
data in such a way that the imputed variables have minimal weighting in producing the low 
dimensional map. Hence, it has least effect on the derivation of the lower dimensional map. 
Secondly, the t-SNE technique itself is a more suitable approach compared to other 
dimensionality reduction algorithms such as incumbent Principal Component Analysis 
(PCA). PCA aims to keep variation in the data and does not care about the pairwise 
relationships between data points, whereas manifold learning techniques such as t-SNE 
performs better in keeping similarities. 
As a follow up to this work, more applications of this techniques next to the technology 
trajectories and design voids, as showcased in this paper, are yet to be explored. The promise 
of this technique is its complementary position in various technometrics analysis, which is yet 
to be fulfilled. 
Furthermore, a methodological study regarding the validation of the technique using 
controlled experiments on a complete data set is on the research agenda of the authors.  
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