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Abstract	  
This paper builds on an innovative Information Retrieval tool, Ariadne. The tool has been 
developed as an interactive network visualization and browsing tool for large-scale 
bibliographic databases. It basically allows to gain insights into a topic by contextualizing a 
search query (Koopman et al., 2015). In this paper, we apply the Ariadne tool to a far smaller 
dataset of 111,616 documents in astronomy and astrophysics. Labeled as the Berlin dataset, 
this data have been used by several research teams to apply and later compare different 
clustering algorithms. The quest for this team effort is how to delineate topics. This paper 
contributes to this challenge in two different ways. First, we produce one of the different 
cluster solutions and second, we use Ariadne (the method behind it, and the interface - called 
LittleAriadne) to display cluster solutions of the different group members. By providing a tool 
that allows the visual inspection of the similarity of article clusters produced by different 
algorithms, we present a complementary approach to other possible means of comparison. 
More particularly, we discuss how we can - with LittleAriadne - browse through the network 
of topical terms, authors, journals and cluster solutions in the Berlin dataset and compare 
cluster solutions as well as see their context.  	  

Conference Topic 
Methods and techniques; Mapping and Visualization 

Introduction 
What are essence and boundary of a scientific field? How can a topic be defined? Those are 
questions that are core to bibliometrics. Rigour and stability in defining boundaries of a field 
are important for research evaluation and funding distribution. However, if you as a 
researcher would seek for information about a certain topic of which you are not an expert 
yet, your information needs are quite different. Among the many possible hits for a search 
query you might want to know which are core works (articles, books) and which are rather 
peripheral. You might want to use different rankings (Mutschke & Mayr, 2014) or get some 
context. On the whole you would have less need to define a topic and a field in a bijective, 
univocal way. The same holds if you want to compare different clustering algorithms. Here 
again, you are in need to illustrate similarities and differences between different allocations of 
documents to clusters. Ways to contextualize them and browse through these contexts would 
be desirable. This is our starting point. 	  
Decades of bibliometrics research have produced many different algorithms to cluster 
bibliographic records. They often focus on one entity of the bibliographic record. For 
example, articles and terms those articles contain (in title, abstract and/or full text) form a 
                                                
1	  This paper is submitted as part of the Special Session at the ISSI conference 2015 “Same data – different 
results? The performative nature of algorithms for topic detection in science”.	  
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bipartite network from which we can either build a network of related terms (co-word 
analysis) or a network of related articles (based on shared words). The first method, 
sometimes also called lexical, has been often applied in scientometrics to produce so-called 
topical or semantic maps. The same exercise can be applied to authors and articles, articles 
and journals, in effect each element of the bibliographic record for an article (Havemann & 
Scharnhorst, 2012). If we extend the bibliographic record with the list of references, we enter 
the area of citation analysis. Here two methods are widely used: direct citations (known as 
delivering often sparse matrices) and co-citation maps (known as a good method to identify 
research fronts). Hybrid methods combine citation and lexical analysis (e.g., Zitt & 
Bassecoulard, 2006; Janssens et al., 2009). The majority of studies applies one technique. But, 
sometimes analysis and visualization of multi-partite networks can be found (cf. Van Heur, 
Leydesdorff, & Wyatt 2013). 	  
Each of the possible different network representations of articles stands for another aspect of 
connectivity between published scientific works. Co-authorship networks shed light on the 
social dimension - the invisible colleges - of knowledge production (Mali et al., 2012; Glänzel 
& Schubert, 2004). Citation relations are interpreted as traces of flows of knowledge (Price, 
1965; Radicchi, Fortunato, & Vespignani, 2012). Depending on which element of the 
bibliographic record is used, we obtain different perspectives on how a field or a topic is to be 
conceived - as conceptional, cognitive unit; as a community of practice; or as institutionalized 
in journals. We can call this a measurement effect. Another source of variety next to 
differences resulting from what to analyze is how to analyze it. Finding clusters is part of 
network analysis. But, clusters can be defined in different ways, and aside of different 
possible definitions of cluster to determine them for a large-scale network can be 
algorithmically challenging. Consequently, we find different solutions for one algorithm (if 
parameters in the algorithm are changed) and different solutions for different algorithms. One 
could call this an effect of the choice of instrument for the measurement. Last but not least, 
we can ask ourselves, if topics clearly delineated from each other really exist. Often in science 
very different topics still are related to each other. There exist unsharp boundaries and almost 
invisible long threads in the fabric of science (Boyack & Klavans, 2010), which might inhibit 
to find a contradiction-free solution. There is a seeming paradox between the fact that experts 
often can rather clearly identify what belongs to their field or a certain topic, and that it is so 
hard to quantitatively represent this with bibliometrics methods. However, a closer look into 
science history and science and technology studies reveals that what belongs to a field or a 
topic can still differ substantially also in the opinions of different experts; it changes over 
time; and even a defined canon or body of knowledge determining the essence of a field or a 
topic might be still subject to controversies and changes. 	  
In the quest to define a topic two things collide. The principal, methodological and data-based 
ambiguity of what a topic is and the necessity to define a topic for purposes of education, 
knowledge acquisition and evaluation. This makes it such an intriguing problem to be solved. 
Because different perspectives can be valid, there is also a need to preserve the above 
sketched diversity or ambiguity. Having said this, for the sake of scientific reasoning it is also 
necessary to be able to further specify the validity and appropriateness of different methods to 
define topics and fields. This paper contributes to the development of methods to compare 
algorithms and to visualize their different results. 	  
We contribute to this sorting out process in two different ways. First, we apply standard 
clustering techniques to a specific article matrix built in a specific way from what we call a 
semantic matrix, in which rows are formed by entities from the bibliographic records of the 
articles (author names, journal ISSNs, topical terms, subjects, and other characteristics), 
columns by reduced dimensions from co-occurrence of entities and topical terms (one subset 
of the entities) over the whole set of articles. While we explain this in detail later, let us note 
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here that the approach is conceptually more similar to classical information retrieval 
techniques based on Salton’s vector space model than to usual bibliometrical mapping 
techniques (Salton & McGill, 1983).	  
In a second step, we present an interactive visual interface called LittleAriadne that allows to 
display the context around those extracted and networked entities. The interface responds to a 
search query with a network visualization of most related terms, authors, journals and (other) 
cluster numbers. The query entry can be words, authors, but also cluster solutions. The 
displayed nodes or entities around a query term represent to a certain extent the context of this 
query. Depending on the query entry, we will see more or less other terms, journals, or 
authors. The interface allows to foreground one of entity types by selecting them. The 
interface has been originally developed for a much larger bibliographic database. In this paper 
our research questions are: 	  
● Q1: How does the Ariadne algorithm work on a much smaller, field specific dataset? 

What possibility do we have to relate the produced contexts to domain knowledge? 
● Q2: Can we use Ariadne to label the clusters produced by the different methods? 
● Q3: Can we use Ariadne to compare different cluster assignments of papers, by 

treating those cluster assignments as additional entities? What can we visually learn 
about the topical nature of these clusters? 

Data 
The dataset used in this paper – called Berlin dataset - entails papers published in the period 
2003-2010 in 59 astrophysical journals. Those papers have been downloaded from the Web of 
Science in the context of a German-funded research project called “Measuring Diversity of 
Research,” conducted at the Humboldt-University Berlin - hence the coined name Berlin 
dataset. It contains 120,007 records in total. Eventually, 111,616 records of the document 
types Article, Letter and Proceedings Paper have been treated with different clustering 
methods (see the other contributions for this special session). 	  
Some of those cluster outcomes have been shared and are later displayed in the visual 
interactive interface. Table 1 shows the label of the different sets of clusters x we have 
included in LittleAriadne, whereby x={a, b, …, f}. We have noted by which group cluster 
solutions were produced in the Source column. Each clustering method produced a set of 
clusters, whereby y stands for the number of clusters in a set. In our paper we used cluster 
solutions from CWTS (label: cwts 1.8), Cornell, Humboldt-University Berlin (hu), SciTech 
(sts-rg), KU Leuven (bc15) and one of our own (oclc_20). Except of cluster set e, they are all 
of the same order of magnitude. Because Ariadne relies on statistics across a corpus of articles 
as large as possible to produce semantic relatedness, we decided to discard clusters with less 
than 4 articles. But, from the solutions with many clusters (d, e) we decided not to display all. 
The last column in Table 1 gives the final numbers of the clusters from different clustering 
solutions.  

Method 

Ariadne - an interactive visualization to navigate entities from large bibliographic databases 
The Ariadne algorithm has been developed on top of the article database, ArticleFirst of 
OCLC. The interface, accessible at http://thoth.pica.nl/relate, allows users to visually and 
interactively browse 35 thousand journals, 3 million authors, 1 million topical terms 
associated with 65 million articles (Koopman et al., 2015). For the purpose of this paper, we 
applied the same method on the Berlin dataset and built an instantiation, LittleAriadne, 
accessible at http://thoth.pica.nl/astro/relate. 
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Table 1. Statistics of clusters generated from different methods. 

x	   Source	   y=#Cluster	   #Cluster in Ariadne	  
a	   cwts 1.8	   23	   23	  
b	   cornell	   23	   23	  
c	   oclc_20	   20	   20	  
d	   hu	   139	   48	  
e	   sts-rg	   5664	   229	  
f	   bc15	   15	   15	  

 	  
Table 2. An article from the Berlin dataset. 

Article ID	   ISI:000276828000006	  

Title	   On the Mass Transfer Rate in SS Cyg	  

Abstract	   The mass transfer rate in SS Cyg at quiescence, estimated from the observed 
luminosity of the hot spot, is log M-tr = 16.8 +/- 0.3. This is safely below the 
critical mass transfer rates of log M-crit = 18.1 (corresponding to log T-
crit(0) = 3.88) or log M-crit = 17.2 (corresponding to the ""revised"" value of 
log T-crit(0) = 3.65). The mass transfer rate during outbursts is strongly 
enhanced	  

Author	   [author:smak j]	  

ISSN	   [issn:0001-5237]	  

Subject	   [subject:accretion, accretion disks] [subject:cataclysmic variables] 
[subject:disc instability model] [subject:dwarf novae] [subject:novae, 
cataclysmic variables] [subject:outbursts] [subject:parameters] [subject:stars] 
[subject:stars dwarf novae] [subject:stars individual ss cyg] [subject:state] 
[subject:superoutbursts] 	  

Cluster 
label	  

[cluster:a 19] [cluster:b 16] [cluster:c 15] [cluster:d 51] [cluster:e 17] 
[cluster:f 1]	  

	  
Table 2 shows for one example article from the Berlin dataset those fields of the 
bibliographic record that we used for LittleAriadne. It also shows which categories of entities 
we have. The ISI record ID has been used among the teams to compare solutions. For Ariadne 
as an interface, it does not matter. Ariadne is different from a usual Information Retrieval 
search engine because it does not primarily deliver lists of documents matching a query, but a 
network of those entities which profile in the whole corpus ‘resonate’ most with the query 
entry. We come back to this aspect later. We further define so-called topical terms. Topical 
terms are frequent single or two-word phrases extracted from all titles and abstracts, for 
example, “mass transfer” and “quiescence” in our example. Next to the topical term, each 
author name is treated as an entity. In Table 2 we display the author name (and other entities 
below) in a syntax that can be used in the search field of the interface to search for a specific 
author. The next type of entities is the ISSN number of a journal. One can search for a single 
journal using the ISSN number, in the visual interface the journal title is used as label for a 
node representing a journal. Further, we have so-called subjects as separate entity type. Those 
subjects origin from the fields “Author Keywords” and “Keywords Plus” of the original Web 

1045



of Science records. As last type of entities we add - and this is specific for LittleAriadne - to 
each of the articles cluster labels from their assignments to clusters produced by different 
teams. For example, the article in Table 2 has been assigned to cluster number 19 by source a 
(cwts 1.8) number 16 by source b (cornell), and so on. In other words, we treat the cluster 
assignments of articles as they would be classification numbers or additional subject 
headings.  
With the above detailed parsing of the bibliographic records we then build the matrix C (see 
Figure 1). In C, frequent topical terms, subjects, author names, cluster labels and journals 
appearing in the Berlin dataset form the rows, and topical terms as well as subjects are listed 
in columns. The relatedness between all entities is computed based on the context they share, 
instead of direct co-occurrences in the data. The context of these entities is captured by their 
co-occurrences with topical terms and subjects, that is, we count how often an author, or a 
cluster label co-occurs with a certain topical term or subject in an article, summing up over all 
articles in the corpus. In the Berlin dataset, we have in total 90,343 entities, including 59 
journals, 27,027 author names (single instances, no author disambiguation applied), 358 
cluster IDs, 39,577 topical terms and 23,322 subjects. This would produce a sparse matrix of 
roughly 90K x 63K that is expensive for computation. 	  
	  

	  
Figure 1. Dimension reduction using Random Projection. 

To make the algorithm scale and produce a responsive visual interface, we applied Random 
Projection (Johnson & Lindenstrauss, 1984; Achlioptas, 2003) to reduce the dimensionality 
of the matrix. As shown in Figure 1, by multiplying C with a 63K x 600 matrix of randomly 
distributed -1 and 1, the original 90K x 63K matrix C is reduced to a Semantic Matrix C’ of 
the size of 90K x 600, with each row vector representing the semantics of an entity. With this 
Semantic Matrix, the interactive visual interface dynamically computes the most related 
entities (e.g. ranked by cosine similarity) to a search query and presents a networked 
visualization of the context of a query term whereby entities are positioned closer to each 
other if they are more related to each other. 

OCLC clusters production - Clustering the Berlin dataset using the Semantic Matrix 
The Ariadne interface provides a networked view about entities associated with articles, but it 
does not produce article clusters straightaway. In order to cluster articles, we need to build a 
semantic representation of each article. We receive the semantic representation for an article 
by the following steps. For each article, we look up all entities related to this article in the 
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Semantic Matrix C’. For our example in Table 2 we have one vector representing the single 
author of that article in the whole Semantic Matrix, 12 vectors representing the subjects, one 
vector for the journal, 6 vectors representing the cluster labels and n vectors for all extracted 
topical words. In other words, each article is represented by a subset of vectors and the vector 
components correspond to the dimensions of the Semantic Matrix. We then take the average 
of those single entity vectors as the semantic representation of a specific article. All articles 
together form a matrix M with 111,616 rows and 600 columns.  We applied a standard 
clustering technique - the MiniBatchKmeans method (Sculley 2010) - to M. We used the 
scikit-learn python library (http://scikit-learn.org/) for this. Applied to the Berlin dataset we 
receive a cluster solution with a comparable size of k=20 clusters, labeled as oclc_20, and a 
unique assignment of articles to this cluster.	  

Results - The Berlin dataset in LittleAriadne 
We used the visual, interactive interface built for the Berlin dataset to the context around a 
specific cluster solution and the similarity between different ones. For this we performed 
different experiments, which correspond to the research questions Q1-Q3 of the introduction	  
● Experiment 1: We used LittleAriadne as information retrieval tool. We searched with 

query terms, inspected and navigated through the resulting network visualization. (Q1)	  
● Experiment 2: We used the semantic matrix to provide the most related topical terms 

for each cluster as an approximation of cluster labels. (Q2)	  
● Experiment 3: We used the query syntax to display two or more cluster solutions 

together in one overview. (Q3)	  

Experiment 1 - Information retrieval 
In LittleAriadne we can now study the Berlin dataset as any other dataset. Figure 2 gives a 
snapshot of the context about “magnetic flux” used as query term.2 The most related topical 
terms and subjects are shown, together with 3 most related clusters provided by CWTS, 
Cornell and SciTech (coded in different colors). Each node is clickable which leads to another 
visualization of the context of the selected node. When mousing over a node, one sees how 
often this entity occurs in the whole corpus. Given that different statistical methods are at the 
core of the Ariadne algorithm, this gives an indication of the reliability of the suggested 
position and links. In the interface one can further refine the display. For instance, one can 
choose the number of nodes to be shown or decide to limit the display to only authors, 
journals, topical terms or clusters. Within the interface, one can navigate the context of 
entities in the Berlin dataset by seamlessly travelling between authors, journals, topical terms 
and clusters in a visual and interactive way. 

Experiment 2 -Labeling clusters  
Please note, that in LittleAriadne we cannot see the position of articles in relations to the 
different entities. One could say that the articles produce the elements of the networked 
context, but they themselves are distributed over it. What we can do is to switch to a view that 
shows most related topical terms, subjects, journals, authors, and other clusters. The outcome 
of such a click-through action is shown in Figure 3.3 In this example, the most related topical 
terms, subjects, one journal, and four other clusters are presented as the contextual 
information about the cluster “a 2”. 

                                                
2 Figure 2 is accessible at http://thoth.pica.nl/astro/relate?input=magnetic+flux.  
3 Figure 3 is accessible at http://thoth.pica.nl/astro/relate?input=%5Bcluster%3Aa+2%5D.  
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Figure 2. Context around “magnetic flux”. 

It is now possible to label each cluster using the most related topical terms. As shown in Table 
3, the 9 topical terms most related to cluster “a 2” are “cosmology,” “dark energy,” “density 
perturbations,” “cosmologies,” “planck,” “cosmological,” “spatial curvature,” “inflationary,” 
and “inflation.” Together they give a rough idea about what this cluster with 8,954 articles is 
about, but it requires domain expertise to evaluate and transform them into real cluster labels, 
meaning representing names of specialties, topics or fields used by the scientific community, 
a well-known problem of bibliometric mapping (Noyons, 2005). 	  
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Figure 3. The contextual view of cluster “a 2”. 

Table 3. Top related topical terms. 

Cluster ID	   Top 9 most related topical terms	  

a 2	   "cosmology" "dark energy" "density perturbations" "cosmologies" 
"planck" "cosmological" "spatial curvature" "inflationary" "inflation"	  

b 2	   "cosmology" "cosmological constant" "cosmologies" "cosmological" 
"universes" "dark energy" "quadratic" "tensor" "planck"	  

c 17	   "power spectrum" "cosmological parameters" "cmb" "last scattering" 
"anisotropies" "microwave background" "power spectra" "planck" "cosmic 
microwave"	  

d 28	   "density perturbations" "inflationary" "inflation" "dark energy" "scale 
invariant" "spatial curvature" "cosmological perturbations" "inflationary 
models" "cosmologies"	  

f 11	   "cosmology" "cosmological" "dark energy" "universe" "planck" "density 
perturbations" "cosmologies" "spatial curvature" "flat universe"	  
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Experiment 3 - Comparing cluster solutions  
In LittleAriadne we extended the interface with a possibility to compare sets of clusters. In 
Figure 4 (a) we can visually see the high similarity between clusters from CWTS and those 
from Cornell.4 Nearly each CWTS cluster is accompanied by a Cornell cluster. Figure 4 (b) 
shows two other sets of clusters which partially agree with each other but also clearly have 
different capacity in distinguishing different clusters.5 Figure 5 shows all the cluster entities 
from all six clustering solutions. Given the amount of the clusters, it is difficult to grasp the 
detailed difference between solutions. However, this visualization does provide a general 
overview of all the clustering solutions, based on their similarities to each other.  
	  

	  

(a) Highly similar (between CWTS 1.8 and 
Cornell) 

(b) Partially agreeing (between Cornell and 
SciTech)	  

Figure 4. Comparison between sets of clusters. 

Discussion and Conclusion 
We present a method and an interface that allows browsing through the contexts of entities, 
such as topical terms, authors, journals and subjects associated with a set of documents. We 
have applied the method to the problem of topic delineation addressed in this special session. 
Because the tool shows (local) context and not the position of single documents in relation to 
clusters we think it has a potential to be complementary to any other method of cluster 
comparison. In particular, we have asked how the Ariadne algorithm works on a much 
smaller, field specific dataset. Not surprisingly, compared with our exploration in the 
ArticleFirst interface, we find more consistent representations. That means that specific 
vocabulary is displayed, which can be cross-checked in Wikipedia or Google Scholar, for 
which the interface offers a direct click through.	  

                                                
4 Figure 4(a) is accessible at 
http://thoth.pica.nl/astro/relate?input=%5Bcluster%3Aa%5D%5Bcluster%3Ab%5D&type=S&show=50.  
5 Figure 4(b) is accessible at 
http://thoth.pica.nl/astro/relate?input=%5Bcluster%3Ae%5D%5Bcluster%3Ab%5D&type=S&show=300.	  	  
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Figure 5. Comparing clusters from 6 clustering solutions. 

On the other hand, the bigger number of topical terms in the larger database leads to a 
situation where almost every query term produces a response. In LittleAriadne searches for 
e.g., literary persons such as Jane Austen retrieve nothing - a blank screen. In preparation of 
this paper we surfed through the interface, and compared the most relevant topical terms 
around a cluster to other classifications used in Astrophysics, such as Physics and Astronomy 
Classification Scheme (PACS®6). In this punctual exploration we did find correlations 
between the names of PACS classes (subclasses, and related controlled vocabulary) and the 
selected topical terms in LittleAriadne. We will further compare the context around clusters 
and the suggested related topical terms with labels produced by other teams in this special 
session. Ultimately, the discussion with domain experts belongs to a proper evaluation of the 
interface. We demonstrated that we can use LittleAriadne to compare different cluster 
solutions mutually and even generate a wider overview. We will discuss in the special session 
how Ariadne can further be of use in the comparison of clustering and delineation of topics. 

                                                
6 http://www.aip.org/publishing/pacs/pacs-2010-regular-edition 
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At least, we hope that this interactive tool supports discussion about different clustering 
algorithms and helps to find the right meaning of clusters, and appropriate labels for them.  
We also have plans to further develop the Ariadne algorithm. The Ariadne algorithm is 
general enough to accommodate additional types of entities to the semantic matrix. In the 
future, we plan to add citations, publishers, conferences, etc. with the aim to provide a richer 
contextualization of entities. We also plan to add links to articles that contribute to the 
contextual visualization, this way strengthening the usefulness of Ariadne not only for the 
associative exploration of contexts similar to scrolling through a systematic catalogue, but 
also as a direct tool for document retrieval. 	   In	   this	   context	  we plan to further compare 
LittleAriadne and Ariadne. In a first attempt, we ‘projected’ the astrophysical documents into 
ArticleFirst by looking them up in the large semantic matrix built for Ariadne. We found the 
resulting representations less consistent when browsing through. That is not a surprise, 
because when merging them you see how field-specific content fits and miss-fits into many 
other contextualizations. The advantage of LittleAriadne is the confinement of the dataset to 
one scientific field and topics within. We hope by continuing such experiments also to learn 
more about the relationship between genericity and specificity of contexts, and how that can 
be best addressed in information retrieval.	  
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