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Abstract 
It is important to identify the most appropriate statistical model for citation data in order to 
maximise the power of future analyses as well as to shed light on the processes that drive 
citations. This article assesses stopped sum models and compares them with two previously 
used models, the discretised lognormal and negative binomial distributions using the Akaike 
Information Criterion (AIC). Based upon data from 20 Scopus categories, some of the 
stopped sum models had lower AIC values than the discretised lognormal models, which were 
otherwise the best. However, very large standard errors were produced for some of these 
stopped sum models, indicating the imprecision of the estimates and the impracticality of the 
approach. Hence, although stopped sum models show some promise for citation analysis, they 
are only recommended when they fit better than the alternatives and have manageable 
standard errors. Nevertheless, their good fit to citation data gives evidence that two different, 
but related, processes drive citations. 

Conference Topic 
Citation and co-citation analysis 

Introduction 
Fitting statistical models to citation data is useful both to understand the citation process itself 
(de Solla Price, 1976) and to identify the factors that affect the citedness of academic papers 
(Bornmann, Schier, Marx, & Daniel, 2012; Didegah & Thelwall, 2013). For example, 
negative binomial regression previously has been used to analyse factors underlying patent 
citations (Maurseth & Verspagen, 2002). The choice of statistical model is not straightforward 
(Bookstein, 2001), however, because citation data is typically highly skewed (de Solla Price, 
1976) with a heavy tail (i.e., with particularly many articles having high citation counts) 
which makes it difficult to identify and fit the best distribution (Clauset, Shalizi, & Newman, 
2009). Nevertheless, it has recently been shown that the distribution of citations to articles 
from an individual Scopus category and year follows a hooked power law or a discretised 
lognormal distribution substantially better than a power law (Thelwall & Wilson, 2014a) and 
that, on this basis, (discretised) ordinary least squares regression on the log of the citation 
data, after adding 1 to cope with the problem of uncited articles, is applicable and is probably 
the best available regression method (Thelwall & Wilson, 2014b). It should be noted that 
although the data is well fitted by the discretised lognormal distribution, it should not be 
assumed that it was derived from that distribution, as models should not be regarded as literal 
descriptions of nature (Hesse, 1953). Moreover, it is useful to assess additional statistical 
models in case a more powerful model can be found as well as to shed light on the processes 
underlying citation, which are still far from fully understood. This paper investigates stopped 
sum models for citation data for the first time. These have very different underlying 
assumptions to the lognormal distribution but can result in similar shaped distributions. 
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Hence, should citation data fit them well, the results would have both practical and theoretical 
implications for citation analysis. 

Stopped sum distributions 
Stopped sum distributions were initially developed by Neyman to model the number of larvae 
in a field (Neyman, 1939). Neyman viewed the distribution of larvae as resulting from two 
population waves. The first ‘parent’ (or primary wave) distribution was followed by a 
distribution of ‘offspring’ (or secondary wave), whereby the numbers in the secondary wave 
would be dependent on the numbers in the primary wave; the overall population being the 
sum of the populations from the two waves (Johnson, Kemp, & Kotz, 2005, pp. 381–382). 
The two waves can have completely different statistical distributions. If, for example, the 
primary wave distribution is Poisson and the secondary wave distribution is negative 
binomial, the overall distribution is known as a Poisson stopped sum negative binomial (NB) 
distribution. Here stopped sum models are explored due to their potential to model citation 
data as two waves, the primary wave and secondary wave. Given that the overall number of 
citations that an article receives might come from a similar two waves process, the primary 
wave representing citations received shortly after a journal article has been published, and the 
secondary wave, perhaps overlapping with the first to some extent, representing the citations 
received as a result of scientists discovering an article because of its previous citations, either 
directly by following citations or indirectly because more cited articles are ranked more 
highly in some citation databases.  
The stopped sum models for citation counts could also be appropriate if the two waves 
occurred simultaneously instead of sequentially. For example, for the Poisson stopped sum 
negative binomial model, one of the wave distributions follows the Poisson distribution and 
the other wave follows the negative binomial distribution at the same time.  
The original model proposed by Neyman (1939) assumed that zero counts in the primary 
wave will automatically be followed by zero counts in the second wave. Hence, if X follows 
the Poisson stopped sum NB distribution, P(X=0) is just P(X=0) under the Poisson 
distribution.   
For citation counts of one or more, the stopped sum assumes that this can only be a result of a 
non-zero citation in the primary wave. For example, a citation count of 3 can only arise as a 
result of one of the three combinations:  

• 3 citations in the primary wave, 0 citation in the secondary wave; or 
• 2 citations in the primary wave, 1 citation in the secondary wave; or 
• 1 citation in the primary wave, 2 citations in the secondary wave.  

The Poisson stopped sum NB distribution will therefore have the following probability mass 
function (p.m.f.): 

𝑃 𝑋 = 𝑦 =

𝑒!!                                                                                                    𝑖𝑓  𝑦 = 0

𝑒!!𝜆!

𝑗!
∗    𝑦 − 𝑗 + 𝛼 − 1𝛼 − 1 𝑝! 1− 𝑝 !!!               𝑖𝑓  𝑦 ≥ 1, and  𝑝 =

𝛼
𝜇 + 𝛼

  
!

!!!

 

 
The other stopped sum distributions that are considered include the NB stopped sum Poisson 
distribution:  
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𝑃 𝑋 = 𝑦 =

𝑝!                                                                                                                                                               𝑖𝑓  𝑦 = 0

𝑦 + 𝛼 − 1
𝛼 − 1 𝑝! 1− 𝑝 ! ∗

𝑒!!𝜆!!!

(𝑦 − 𝑗)!                         𝑖𝑓  𝑦 ≥ 1  
!

!!!

 

 
and the NB stopped sum NB distribution: 
 

 
 
where 𝑝 = !

!!!
 in all cases.  

The Poisson stopped sum Poisson distribution was considered but because very large AICs 
were obtained indicating a poor fit for citation data we do not discuss it further here. 

Modified stopped sum distributions 
In the study made by Neyman in 1939, the restriction of having zero counts in the primary 
wave resulting in zero counts in the secondary wave was necessary, but in the case of citation 
analysis, it is feasible that a zero citation count in the first population wave could be followed 
by a non-zero count in the second. This can occur due to the limitations of the citation 
database used to analyse the citations. For example, an article may be uncited in Scopus, but 
cited in Google Scholar, and its Google Scholar citations could attract new second wave 
citations.  Hence a modified stopped sum is also considered, where, for example, 3 citations 
could arise from 0 citations in the primary wave and 3 citations in the secondary wave. The 
modified Poisson stopped sum NB distribution for this case has p.m.f.: 

𝑃 𝑋 = 𝑦 =
𝑒!!𝜆!

𝑗! ∗    𝑦 − 𝑗 + 𝛼 − 1𝛼 − 1 𝑝! 1− 𝑝 !!!               𝑤ℎ𝑒𝑟𝑒  𝑦 ≥ 0  and  𝑝 =
𝛼

𝜇 + 𝛼    
!

!!!

 

Using similar adjustments, the modified NB stopped sum Poisson distribution has p.m.f.:  

𝑃 𝑋 = 𝑦 = 𝑦 + 𝛼 − 1
𝛼 − 1 𝑝! 1− 𝑝 ! ∗

𝑒!!𝜆!!!

(𝑦 − 𝑗)!                         𝑤ℎ𝑒𝑟𝑒  𝑦 ≥ 0  and  𝑝 =
𝛼

𝜇 + 𝛼  
!

!!!

 

 
Whilst the modified NB stopped sum NB distribution has p.m.f.:  

 
𝑤ℎ𝑒𝑟𝑒  𝑦 ≥ 0  and  𝑝 =

𝛼
𝜇 + 𝛼 

 
Note that the modified Poisson stopped sum Poisson distribution is equivalent to a Poisson 
distribution, and hence is not considered here. 
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Research Questions 
1. Do stopped sum models fit citation count data better than discretised lognormal and 

negative binomial models? 
2. If so, which stopped sum model produces the most consistent results?  

Methods 
Data from 20 different subject areas were selected from Scopus in order to assess the models 
for a wide range of different disciplines. This is important because citation patterns are known 
to vary considerably between disciplines. This data has previously been analysed in Thelwall 
and Wilson (2014). Each subject area is a single Scopus category and consists of all 
documents of type article that were published in 2004, giving ten years for the articles to 
attract citations. 

Fitting statistical models 
The models were fitted using the R software (R Core Team, 2014). The MASS package 
(Venables & Ripley, 2002) was used to fit the negative binomial distribution. As there are no 
known statistical packages readily available to model the proposed stopped sum distributions, 
the parameters of the distributions were estimated by maximum likelihood estimations 
methods. AIC is a commonly used statistic for model selection, the model with the lowest 
AIC usually being regarded as the model that best fits the data (Bozdogan, 2000).  

 
 
Hence the AIC may be regarded as a penalised version of the loglikelihood, where L is the 
likelihood of the model and p is the number of parameters estimated. For example, both the 
Poisson stopped sum NB and NB stopped sum Poisson will have p=3, as there is one 
parameter (λ) in the Poisson wave and two parameters (NB mean, µ and size, α) in the NB 
wave. The NB stopped sum NB model will have p=4 as two parameters (µ and α) are 
estimated in each of the NB waves. Whilst opinions differ, when selecting the ‘best’ model, it 
has been suggested that a difference of 6 between the AICs will be large enough to imply a 
significant difference between the models (Burnham & Anderson, 2003). 

Standard errors 
Standard errors were computed to reflect the precision with which the proposed statistical 
models estimate the relevant parameters (Dodge, 2003, p. 386). For the negative binomial 
models, standard errors were obtained directly from the model fitting software. For the 
discretised lognormal, the standard errors were obtained by bootstrapping. 
For other models the standard errors were calculated using the Hessian matrix, which is the 
matrix of the second derivatives of the log-likelihood function. The Hessian matrix can also 
be obtained whilst estimating the parameters for the corresponding distributions using the 
optim function in R (R Core Team, 2014). Suppose that L represents the log-likelihood 
function of a stopped sum distribution with two parameters, say λ and µ, then the Hessian 

matrix is given by 

!!!
!!!

!!!
!"!#

!!!
!"!#

!!!
!!!  

, and the standard errors for λ and µ are calculated as the 

square root of the main diagonal of the inverse of the negative Hessian matrix (Ruppert, 2011, 
pp. 166–167). At 95% confidence interval can be computed by parameter estimate ± 
1.96*standard error. 
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Results 
The modified negative binomial stopped sum negative binomial distribution (NBNB) 
produced the lowest AIC for 13 out of 20 subjects. The next most successful models are the 
NB stopped sum NB and the discretised lognormal. The Poisson stopped sum NB and the 
modified NB stopped sum Poisson each fitted ‘best’ for only one subject (see Table 3 in 
Appendix).  

Parameter estimates for stopped sum distributions  
The estimated parameters for Tourism and Soil will be discussed for the proposed stopped 
sum distributions. These subjects were selected as they are examples of subjects, which return 
parameter estimates and errors for all the fitted distributions. From Table 1, when Tourism is 
fitted with the Poisson stopped sum NB model, one wave follows the Poisson distribution 
with mean, λ=3.22, whilst the other wave follows a negative binomial distribution with mean, 
µ=18.77 and size, α=0.57; thus the negative binomial wave has a variance of 640.19, since the 
negative binomial variance equals  !

!

!
+ 𝜇. However, when fitted with the NB stopped sum 

Poisson model, one wave follows a negative binomial distribution with mean, µ=21.53, size, 
α=0.98, and variance=495.77, whilst the other wave follows a Poisson distribution with mean, 
λ=0.01. The estimated means (µ) in both negative binomial waves are relatively larger than 
the estimated means (λ) in the Poisson waves, suggesting that the majority of citation counts 
for Tourism derive from the negative binomial wave. This supports the interpretation that the 
two waves occur simultaneously, instead of sequentially, as mentioned above. It is also 
interesting to note that the sum of the estimated means from the Poisson waves and negative 
binomial waves of these stopped sum models are approximately equal to the estimated mean 
when Tourism is fitted solely with the negative binomial model.  
When fitted with the NB stopped sum NB model, the estimated mean for Tourism in the 
primary NB wave (13.48) is larger than that of the secondary NB wave (8.25), suggesting that 
the majority of citation counts for Tourism derive from the primary wave. Furthermore, the 
sum of the estimated means from the NB stopped sum NB model for Tourism is also 
approximately equal to the estimated mean when Tourism is fitted with the negative binomial 
model only.  
Similar results were obtained for Soil. When citation counts for Soil are fitted with the 
Poisson stopped sum NB model and NB stopped sum Poisson model, the mean estimates in 
the NB waves are much larger than those of the Poisson waves, suggesting that the majority 
of citation counts from Soil derive from the NB wave. Moreover, the sum of the estimated 
means for the stopped sum models is approximately equal to the estimated mean for the 
negative binomial model only (which is 16.93). 

Table 1. Estimated parameters for the NB, Poisson stopped sum NB, NB stopped sum 
Poisson and NB stopped sum NB models.  

 

Negative 
binomial 

Poisson stopped 
sum NB 

NB stopped sum 
Poisson NB stopped sum NB 

Sub. mu size 𝜆! mu2 size2 mu1 size1 𝜆! mu1 size1 mu2 size2 
Tour. 21.53 0.98 3.22 18.77 0.57 21.53 0.98 0.01 13.48 1.30 8.25 0.10 
Soil 16.93 0.74 2.27 16.09 0.56 16.87 0.74 0.06 13.78 0.82 3.46 0.04 
 
Table 2 compares estimated parameters for the NB distribution against those of the modified 
stopped sum distributions. For the modified versions, the estimates of the Poisson stopped 
sum NB are similar to those of the NB stopped sum Poisson distributions. Similarly to the 
stopped sum distributions, Tourism and Soil depends largely on the wave that derives from 
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the NB distribution, as the λ estimates are relatively lower than the mu estimates. 
Furthermore, the sum of the two mu estimates for the modified NB stopped sum NB 
distributions (21.533 and 16.931) are also similar to the estimates from the NB distribution. 

Table 2. Estimated parameters for the NB, modified Poisson stopped sum NB, modified 
NB stopped sum Poisson and modified NB stopped sum NB models. 

 

Negative 
binomial 

Modified Poisson 
stopped sum NB 

Modified NB 
stopped sum 

Poisson 
Modified NB stopped sum 

NB 
Subj. mu size 𝜆! mu2 size2 mu1 size1 𝜆! mu1 size1 mu2 size2 
Tour. 21.53 0.98 1.41 20.12 0.75 20.12 0.75 1.41 14.75 0.35 6.79 1.17 
Soil 16.93 0.74 0.11 16.82 0.72 16.81 0.72 0.11 4.92 0.08 12.01 0.75 
 

Standard errors for stopped sum distributions   
Figures 1 and 2 show the mean and size estimates for the primary and secondary waves of the 
modified NB stopped sum NB distributions. Visual, Literature and Rehab were excluded as 
standard errors could not be obtained as a result of a singular hessian matrix.  
Although the modified NB stopped sum NB distribution gave the lowest AIC, the model 
produced very large standard errors, resulting in large confidence intervals, as shown in 
Figures 1 and 2, indicating that this modified NB stopped sum NB model is impractical. This 
result could possibly be due to the nature of citations, which differs from that of the larvae 
studied by Neyman. With larvae and their offspring it is clear which wave of population a 
larvae originates from, this is not the case with citations – usually it will be far from clear cut 
which wave a given citation might belong to, which in turn leads to difficulty estimating the 
mean number of citations for that wave, and hence the large associated standard errors. 
 

 
Figure 1. Mean (mu) estimates for the modified NB stopped sum NB distribution for 

both primary and secondary waves with 95% confidence intervals. 
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Figure 2. Size estimates for the modified NB stopped sum NB distribution for both 

primary and secondary waves with 95% confidence intervals. 
A further examination of the modified NBNB stopped sum model was carried out with 
simulations using some known fixed parameters, and similar results were obtained. Moreover, 
simulations were carried out on all the other stopped sum models and similar results were also 
obtained for the NBNB stopped sum distribution. Hence it can be concluded that both the 
stopped sum and modified NBNB stopped sum models are impractical when modelling data 
with no covariates. Further studies should be conducted to see if adding covariates would 
change the reliability of the model. 
 

 
Figure 3. Mu estimates for the discretised lognormal distribution with 95% confidence 

intervals. 
On the other hand, the 95% confidence interval for all subjects except Visual for the 
discretised lognormal distribution (Fig. 3) are much narrower compared to that of the 
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modified NB stopped sum NB distribution. This indicates that the discretised lognormal 
distribution is more suitable in practice. 

Conclusions 
This paper tested stopped sum distributions for modelling citation data for the first time and 
also introduces a modification to allow the ‘waves’ to occur simultaneously rather than 
sequentially. However, given that the standard errors for the stopped sum distribution tend to 
be very large it is doubtful whether these distributions are useful for citation data even though 
they produce the lowest AIC. For example, out of all the tested distributions, the modified NB 
stopped sum NB distribution produced the lowest AIC, but the large standard errors suggests 
that it is an unsuitable model as its parameter estimates are too unreliable for predictions or 
conclusions based upon the model to be meaningful.  
Overall, the results suggest that for covariate free data, the discretised lognormal distribution 
is much more suitable for regressing citation data from a single subject and year. 
Nevertheless, on a theoretical level, the good fits found for some of the stopped sum models 
give evidence that there are (at least) two important and separate processes that govern the 
citing practices of authors. For one of these processes, existing citations are irrelevant for new 
citations, and for the other, they are relevant.   
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 Appendix 
Table 3. AIC for all subjects for each distribution 

Subjects 
Discretised 
lognormal 

Negative 
binomial 

Poisson 
stopped 
sum NB  

NB stopped 
sum Poisson 

NB stopped 
sum NB  

Modified Poisson 
stopped sum NB  

Modified NB 
stopped sum 
Poisson  

Modified NB 
stopped sum 
NB  

Number 
of
articles 

Visual 7902 7928 7916 7930 7865 7920 7920 7865 4096 
Tourism 4956 4980 4980 4982 4969 4964 4964 4955 608 
Soil 33470 33344 33458 33345 33287 33344 33344 33282 4347 
Marketing 12917 13073 13025 13073 12941 13015 13015 12932 1550 
Literature 11624 11635 11618 11637 11622 104485 11624 25449 5000 
Horticulture 23058 23093 23165 23095 23001 23067 23067 22992 3009 
History 19797 19994 19849 19996 19824 19880 19880 19795 5000 
Genetics 45622 46014 45997 46002 45474 45982 45982 45471 5000 
Ecology 42787 42343 42441 42335 42253 42366 42793 42240 5000 
Developmental 40985 41604 41340 41558 40979 41385 41385 40956 4541 
Biochem 42901 43690 43540 43638 42675 43659 43659 42680 5000 
Accounting 9927 9933 9924 9931 9914 9929 9929 9896 1178 
AppliedMaths 33504 33739 33704 33741 33460 33685 33685 33441 5000 
Urology 38932 38621 38793 38623 38560 38623 38623 38563 5000 
StatsProb 36696 37416 37177 37418 36742 37186 37186 36706 5000 
Rehab 28086 27531 27622 27533 27628 27483 27483 28322 5000 
Oncology 42577 42620 42679 42607 42196 42660 42684 42225 4646 
Logic 32258 32044 32164 32046 32012 32045 32045 32010 4547 
Dermatology 19608 19774 19671 19776 19675 19692 19692 19606 3184 
Algebra 2968 2991 2973 2993 2977 2978 2978 2972 528 
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Table 4. Estimated parameters of negative binomial distribution with the stopped sum distributions 

Negative binomial Poisson stopped sum NB  NB stopped sum Poisson NB stopped sum NB 

Subjects mu size lambda1 mu2 size2 mu1 size1 lambda2 mu1 size1 mu2 size2 
Visual 0.66 0.17 0.28 1.61 0.34 0.66 0.17 0.00 0.60 0.19 0.26 0.00 
Tourism 21.53 0.98 3.22 18.77 0.57 21.53 0.98 0.01 13.48 1.30 8.25 0.10
Soil 16.93 0.74 2.27 16.09 0.56 16.87 0.74 0.06 13.78 0.82 3.46 0.04 
Marketing 26.13 0.63 2.63 24.97 0.43 26.02 0.62 0.12 20.34 0.76 6.16 0.01 
Literature 0.79 0.32 0.40 1.18 0.33 0.79 0.32 0.00 0.41 9.22 1.16 0.31 
Horticulture 16.72 0.83 2.52 15.15 0.54 16.71 0.83 0.01 14.27 0.94 2.62 0.02 
History 2.90 0.30 0.75 4.08 0.27 2.90 0.30 0.00 1.26 0.75 3.12 0.12 
Genetics 39.23 0.61 2.71 38.78 0.50 38.96 0.60 0.28 24.30 0.80 15.85 0.04 
Ecology 25.02 0.86 2.52 24.17 0.79 24.73 0.84 0.31 22.61 0.76 2.60 0.32 
Developmental 35.45 0.93 4.03 31.86 0.60 34.56 0.86 0.90 17.95 1.52 17.73 0.12 
Biochem 28.81 0.84 3.21 26.60 0.61 28.08 0.79 0.75 22.86 1.12 6.09 0.01 
Accounting 25.89 0.64 2.46 25.36 0.50 25.66 0.63 0.26 12.93 0.87 14.03 0.12 
AppliedMaths 11.71 0.50 1.68 12.20 0.39 11.71 0.50 0.00 8.20 0.63 4.28 0.03 
Urology 19.39 0.51 1.80 20.69 0.50 19.47 0.51 0.00 15.49 0.56 4.60 0.03 
StatsProb 16.93 0.54 2.12 16.62 0.36 16.93 0.54 0.00 10.50 0.77 7.21 0.03
Rehab 9.29 0.23 0.83 14.56 0.37 9.28 0.23 0.00 0.83 89.55 14.56 0.37 
Oncology 40.23 0.55 2.34 41.68 0.53 39.94 0.54 0.33 25.50 0.68 16.33 0.05 
Logic 13.40 0.53 1.67 14.21 0.49 13.37 0.53 0.00 11.59 0.56 2.19 0.02 
Dermatology 8.07 0.65 1.79 7.44 0.37 8.06 0.65 0.01 1.83 41.25 7.39 0.36 
Algebra 5.75 0.90 1.90 4.46 0.37 5.74 0.90 0.01 1.94 42.31 4.41 0.36 

 

  

193



 
 

Table 5. Estimated parameters of negative binomial distribution with the modified stopped sum distributions 

Negative binomial Modified Poisson stopped sum NB Modified NB stopped sum 
Poisson Modified NB stopped sum NB 

Subjects mu size lambda1 mu2 size2 mu1 size1 lambda2 mu1 size1 mu2 size2 
Visual 0.66 0.17 0.04 0.62 0.14 0.62 0.14 0.04 0.60 0.19 0.06 0.00 
Tourism 21.53 0.98 1.41 20.12 0.75 20.12 0.75 1.41 14.75 0.35 6.79 1.17 
Soil 16.93 0.74 0.11 16.82 0.72 16.81 0.72 0.11 4.92 0.08 12.01 0.75 
Marketing 26.13 0.63 1.02 25.11 0.50 25.11 0.50 1.02 8.35 0.03 17.78 0.76 
Literature 0.79 0.32 11.82 11.99 0.00 0.72 0.24 0.07 4.65 2.71 3.85 0.00 
Horticulture 16.72 0.83 0.50 16.24 0.73 16.18 0.72 0.53 3.82 0.05 12.90 0.91 
History 2.90 0.30 0.20 2.70 0.21 2.70 0.21 0.20 1.08 0.38 1.82 0.07 
Genetics 39.23 0.61 0.43 38.81 0.57 38.81 0.57 0.43 15.12 0.04 24.12 0.75 
Ecology 25.02 0.86 0.00 23.60 0.91 18.21 0.80 0.00 3.36 0.02 21.67 0.93 
Developmental 35.45 0.93 2.56 32.89 0.69 32.89 0.69 2.56 18.40 0.14 17.04 1.41 
Biochem 28.81 0.84 0.69 28.12 0.76 28.12 0.76 0.69 5.79 0.01 23.02 1.11 
Accounting 25.89 0.64 0.34 25.55 0.60 25.55 0.60 0.34 18.48 0.25 7.40 0.60 
AppliedMaths 11.71 0.50 0.28 11.44 0.44 11.44 0.44 0.28 4.26 0.04 7.45 0.58 
Urology 19.39 0.51 0.02 19.37 0.51 19.37 0.51 0.02 4.17 0.03 15.21 0.52 
StatsProb 16.93 0.54 0.78 16.16 0.41 16.15 0.41 0.78 7.19 0.04 9.74 0.72 
Rehab 9.29 0.23 0.09 9.19 0.21 9.19 0.21 0.09 5.71 0.00 25.74 0.20 
Oncology 40.23 0.55 0.00 45.66 0.54 34.70 0.57 0.00 11.43 0.02 28.81 0.64 
Logic 13.40 0.53 0.04 13.37 0.52 13.37 0.52 0.04 2.52 0.03 10.88 0.53 
Dermatology 8.07 0.65 0.60 7.48 0.47 7.48 0.47 0.60 3.22 0.81 4.85 0.16 
Algebra 5.75 0.90 0.84 4.91 0.55 4.91 0.55 0.84 2.48 1.25 3.27 0.23 
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