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Abstract 

There is a growing interest in the application of mapping techniques to gain insights into 

the complex structures of scientific and technological developments.  Cluster analysis and 

projection techniques (like multidimensional scaling, principal components analysis, and 

self organizing maps) are essential components of the toolkits that are used for mapping of 

science.  

 

Hierarchical and non-hierarchical clustering techniques (e.g. k-means) assume that 

boundaries between clusters (i.e., domains or sub-domains of science) are sharp and do not 

overlap. How far is this assumption correct?  Further, the projection of high-dimensional 

data onto low-dimensional spaces (usually two dimensional plots) inevitably leads to 

distortions, and greater the dimensionality of the data, greater is the distortion in the 

projection of individual objects. Here, a crucial question is: What is the extent of distortion 

and how can we assess it? 

 

This paper responds to these concerns and illustrates the application of fuzzy cluster 

analysis and a technique (SPINNE) for visualization of projection distortions.   

 
1  Introduction 
 
Science is essentially a mosaic of fields and sub-fields. A significant feature of scientific 

knowledge is that cognitive boundaries of fields and sub-fields are not static; they keep on 

changing. Another significant feature is that these boundaries are not sharp; they tend to 

overlap one another. 

 



 

 

During the past twenty five years, mapping of science has been concerned with the study of 

interactions and interconnections between various domains of scientific knowledge. i.e. its 

structural features. It has become an important area of research in science and technology 

studies (STS). Its importance can be judged from the range of its applications, which 

include: Identification of linkages between science and technology; Policy impact analysis; 

Technology opportunities analysis; Competitive intelligence; Understanding the structure 

and dynamics of science; Cooperation between industry and academia; etc. (See for 

example: Callon, et al., 1991; Grupp, et al., 1998; Korevaar and van Raan, 1992;   Kostoff, 

et al., 1998; Porter and Detampel, 1995;    Zhu and Porter, 2002).  

 

The mapping is based on the calculation and visualization of relationships between objects, 

such as journals, documents, authors, keywords; classification codes, etc.    The 

methodology for science mapping is now more or less standardized. Briefly, it involves the 

following sequence of steps. 

1. Selection of database(s). 

2. Identification of objects  

3. Calculation of co-occurrences of objects 

4. Construction of a co-occurrence matrix  and its normalization 

5. Cluster analysis to group objects that are named as sub-domains. or themes  

6. Visual representation of relationships between objects, using projection 

techniques like multidimensional scaling (MDS), principal components 

analysis (PCA), pathfinder networks (PFNET) and self-organizing maps 

(SOM). 

 

In a recent paper, Noyons and Buter (2001) pointed out that a major problem in mapping of 

science is the determination of (optimal) number of clusters. There are also other problems:  

 

1. How good is the cluster structure? Is it well defined or merely an artifact of the 

clustering algorithm?  

2. Why should we assume a priori that boundaries of sub-domains of knowledge 

are well-demarcated and non-overlapping?  



 

 

3. What about the quality of projection? In the case of MDS, a global measure of 

quality is ‘Stress’ (which is really a measure of badness of fit).   But, what 

about the representation of individual objects in the map? Even when the stress 

is within acceptable limit, it is quite possible that some objects which are 

proximate in the true high-dimensional (n-D) space may not be proximate in 

the reduced (2-D) space, and vice versa.  How can we visualize distortions in 

the projection?   

   

 This study responds to these concerns and specifically focuses on the following 

methodological issues: (i) What are the pros and cons of fuzzy clustering vis-à-vis crisp 

clustering? (ii) How do we assess the quality of cluster structure? (iii) What is the optimal 

number of clusters and how do we determine that?  (iv) What are the distortions in the 

projection of high-dimensional (n-D) data onto a two-dimensional (2-D) space? These 

issues are discussed with reference to the mapping of cognitive structure of Mathematical 

Psychology, based on inter-journal citation data.    

  

2  Methodology 

The data  

Inter-journal citations are deemed as an operational indicator for the disciplinary 

organization of science (van den Besselaar and Leydesdorff, 1996). In this study, we have 

attempted to map the area of Mathematical Psychology by analyzing citation relations 

among a set of 24 journals, which were selected on the basis of their citation links with three 

core journals: J. Mathematical Psychology, Br. J, Mathematical and Statistical Psychology 

and Psychometrika. The list of journals is given in Table 2.  A matrix of journal-to-journal 

citations was constructed, which indicates the relational structure of the field along two 

dimensions  citing and citedness. The citing dimension reflects the active reproduction of 

the knowledge structure, whereas the citedness dimension reflects the codification of 

knowledge into the archives of scientific literature (van den Besselaar and Leydesdorff, 

1996). This study is based on inter-journal citations along the citing dimension. 

 
 
 



 

 

3  Analysis and Results 
 
Proximity matrix 
 
The journal-journal citation matrix was normalized and Euclidean distances among the citing 

journals were computed. Self citations were excluded since they do not contribute to the 

structure of the citation network. This resulted in a normalized symmetric matrix for 

subsequent cluster analysis and multidimensional scaling 

     Cluster analysis  

Overlapping data structures can be explored through Principal Components Analysis (PCA) 

or fuzzy clustering algorithms.  Van den Besselaar and Leydesdorff (1996) used factor 

analysis to classify journals in the area of Artificial Intelligence into different specialties.  

They attributed journals to specific factors on the basis of factor loadings, but some of the 

journals had high loadings on more than one factor, suggesting an overlapping structure. 

But, PCA is sensitive to outliers and poor correlations due to poorly distributed variables, 

and more importantly cannot deal effectively with nonlinear structures (Rassokhin et al., 

2001). 

 

Prominent fuzzy clustering algorithms are: fuzzy c-means (Bezdek, 1981)  a fuzzification     

of k-means clustering algorithm (and its several variants) and FANNY (fuzzy analysis). In 

this study, we have used FANNY to group the journals into knowledge sub-domains, since it 

offers certain advantages over other fuzzy clustering algorithms. FANNY is based on less 

restrictive assumptions and more importantly yields statistics and graphical displays which 

help in selecting the optimum number of clusters and also in assessing the quality of cluster 

configuration. The    algorithm is described in Kaufman and Rousseeuw (1990) and 

implemented in statistical software, such as WinIDAMS (UNESCO), SPLUS (Mathsoft Inc) 

and NCSS (Hintze, 2001).  

 

In fuzzy clustering, each object is ‘spread over’ various clusters and the degree of belonging 

of an object to different clusters is quantified by means of membership coefficients (mij) 

which are subject to the constraint 

 0    mij   1 for all i = 1,2,…n and for all j: 1,2,….k 



 

 

 where n is the number of objects and  k is the number of clusters. This is called fuzzification 

of the cluster configuration. It has the advantage that it does not force every object into a 

specific cluster and provides much more detailed information about the data structure. By 

convention, the sum of membership coefficients is normalized to 1.  

 

When each object has equal membership in all clusters, the clustering is entirely fuzzy.  On 

the other hand, when each object has a membership of 1 in some cluster and zero 

membership in all other clusters; the clustering is entirely crisp. The algorithm computes a 

coefficient, Dunn’s partition coefficient F (U), which indicates the extent of fuzziness of 

the cluster structure. This coefficient measures how close the fuzzy solution is to the 

corresponding crisp solution.  It ranges from 1/k to 1.  

FU) = 1       Completely crisp clustering 

F(U) = 1/k    Completely fuzzy clustering 

Normalized version of Dunn’s coefficient, Fc(U), ranges from 0 (completely fuzzy 

clustering) to 1 (completely crisp clustering).  Kaufman and Rousseeuw (1990) have also 

proposed another coefficient D(U).  Its normalized version, Dc(U) ranges from 1 

(completely fuzzy clustering) to 0 (completely crisp clustering). 

 

As mentioned earlier, two of the most difficult tasks in cluster analysis are: How to decide 

the appropriate number of clusters and how to distinguish a bad cluster from a good one.  

The algorithm computes a set of coefficients (called silhouettes) and graphical displays 

(silhouette plots) for the nearest crisp cluster. A silhouette measures how well an object has 

been classified by comparing its dissimilarity within its cluster to its dissimilarity with its 

nearest neighbour. It is computed as follows: 

 

      Consider an object I    Cluster A.  

   Let a (I) = Average dissimilarity of I to all other objects in A.  

   Let b (I) = Average dissimilarity of I to all objects in the neighbouring cluster B 

S (I) =  b (I) – a (I) /  Max a (I), b (I))  

 



 

 

 S (I) ranges between 1 and + 1. Silhouette value close to 1 indicates that the object has 

been well classified. Silhouette value close to zero means that the object has been arbitrarily 

classified; in other words it lies between clusters A and B.  Silhouette value close to 1 

implies that the object has been misclassified. The silhouette plot shows which objects lie 

well within the cluster and which ones are arbitrarily or wrongly classified. A useful 

summary statistic is the average value of S across all objects. This summarizes how well the 

cluster structure fits the data. An easy way to select the appropriate number of clusters is to 

choose that number of clusters which maximizes the average silhouette: 

 

The proximity matrix was submitted to the clustering algorithm for a sequence of clusters 

ranging from two to eight clusters, using NCSS software package. Table 1 indicates the 

average dissimilarity, average silhouette and coefficients indicating the fuzziness of cluster 

structure. It can be easily seen that a three- cluster configuration yields the maximum value 

of average silhouette (0.472881), maximum value of Fc (U) and minimum value of Dc (U) 

(i.e., minimum fuzziness). Hence, a three- cluster solution was retained for further analysis 

and interpretation. 

  
The primary output of FANNY is a list of membership coefficients (or assignment 

probabilities) for all the objects. .Table 2 shows membership coefficients of journals in three 

clusters and the nearest crisp cluster. This table is self-explanatory and any elaboration 

would be redundant. Generally speaking, assignment probabilities of journals to the nearest 

crisp cluster are higher for Cluster 1 than those for Cluster 2 and Cluster 3 respectively.  

Looking at the titles of the journals assigned to different clusters, we can label the clusters as 

follows: 

 

Cluster 1:  Statistical Computation 

Cluster 2: Psychological Measurement 

Cluster 3: Psychology 

 

The value of normalized Dunn’s coefficient (0.2085) is much less than 1, which implies that 

cluster configuration is quite fuzzy. This can also be visualized from the assignment 



 

 

probabilities of different journals to the nearest crisp cluster, which range between 0.3972 

and 0.7560. 

  

Table 3 shows silhouette values and silhouette plots for different journals assigned to the 

nearest crisp cluster. It can be easily seen that Cluster 1 is more pronounced than Cluster 2 

and Cluster 3 in that order. Two journals, viz. Psychometrika and Math Soc Sc, seem to be at 

the outskirts of their clusters, since their silhouette values are quite low.  

 

A series of cluster analyses ranging from 2 to 23 clusters was performed to find out if the 

average silhouette exceeds that obtained earlier (S =.0.472881). The three- cluster 

configuration still had the maximum average silhouette, though fuzziness decreased for very 

large values of k. This is understandable. For example, if 24 objects are assigned to 23 

clusters, there would be hardly any scope for fuzziness. The maximum possible average 

silhouette is called Silhouette Coefficient (SC).  

  

According to the thumb rule suggested by Rousseeuw (1987), the Silhouette Coefficient 

equal to 0.472881 implies that the clustering structure is ‘weak to reasonable’ and should be 

confirmed by additional statistical methods.  Hence we have supplemented cluster analysis 

with multidimensional scaling.  

 

 4  Multidimensional Scaling 

Metric multidimensional scaling (MDS) algorithm was used to project the n-D data onto a 

2-D plot.  (The minimum stress value was equal to 0.19). Stress can be reduced by 

increasing the dimensionality of projection or by using non-metric MDS (for ordinal 

data).which seeks to preserve rank order of objects and not inter-object distances in the n-D 

space. Increasing the dimensionality of projection complicates the display and should be 

avoided unless the stress values are greater than the acceptable threshold (viz. 0.20). 

Moreover, the relationship between dissimilarities and inter-point distances in the MDS plot 

was found to be linear. Hence, we did not resort to non-metric MDS. 

 

Figure 1 represents a two dimensional configuration of multivariate relations among the 

journals. In this figure, the journals are represented by circles of different colours to indicate 



 

 

the nearest crisp cluster to which they have been assigned, and of different size to indicate 

the probability of their assignment. The MDS plot validates the three-cluster structure issued 

by FANNY. 

. 

5  Evaluation of MDS configuration 

MDS algorithm is a valuable tool to visualize high- dimensional data on a two-dimensional (2-

D) plane, but unfortunately, the reduction of dimensionality involves distortion.  Higher the 

dimensionality of the data, more difficult it is to represent faithfully onto a 2-D plane. It could 

happen that some points which appear close to each other in the plot are not close neighbours in 

the high-dimensional (n-D) space, and vice versa. The distortions in projection may be spread 

over all pair- wise relationships or concentrated in just a few egregious pairs. 

 

Projection distortions can be revealed by a computer program, SPINNE, developed by Bienfait 

and Gasteiger (1997). The program computes minimum spanning trees (MST) and plots them 

with coordinates issued by the projection algorithm. The minimum spanning trees are calculated 

for the original n-D space and also for the reduced 2-D space and superimposed onto the 2-D 

plots. . If the projection is perfect, then the two plots should exactly match, but that rarely 

happens. The minimum spanning trees superimposed on the 2-D plots can reveal misleading 

close neighbours. The algorithm also computes k largest distortions in inter-point distances.  

Finally, the algorithm produces a coloured scale by means of which we can visualize the extent 

of distance distortions. Figures 2 and 3 represent the MDS plots superimposed by the minimum 

spanning tree computed for the n-D and 2-D spaces respectively, 

 

The most visible distortion revealed by Fig.2 is the crossing of lines. The line connecting points 

2 (Perc Mot Sk) and 22 (Psychol Rev) crosses two lines 16 (J. Math Psy)  4 (Ann Rev Psy) and 

16 (J Math Psy)21 (Psychol B). The crossing of lines violates a fundamental assumption of the 

minimum spanning tree.  

 

Other distortions can be discerned by comparing the MDS plots superimposed by MST 

calculated for the n-D space and that for the 2-D space. Here are instances of points 

connected by the shortest path in the n-D space, but not connected in the 2-D space, which 

means inter-point distances between respective pairs of points are greater in the 2-D space 



 

 

compared to those in the n-D space. This means that citation links among the following pairs 

of journals are stronger than those depicted by the inter-point distances in the MDS plot. 

 

  5 (Ann Stat) 12 (JASA)  
17 (JRSS) 10 (Com Stat) 
1 (Psychometrika)  13 (Com Stat) 
19 (MBR)  21(Psychol B) 

  

The following pairs of points are connected in the 2-D space, but not in the n-D space, which 

means that they are situated closer in the 2-D space than in the n-D space. This means that 

citation links among the following pairs of journals are weaker than those depicted by the 

inter-pint distances in the MDS plot.   

 

5 (Ann Stat) 17 (JRSS)  
15 (J Edu Stat) 19 (MBR) 
9 (Br J Math Stat Psy)  19(MBR) 
21(Psychol B)  4 (Ann Rev Psychol) 
22 (Psychol Rev)  4 (Ann Rev Psy) 
22 (Psychol Rev)  21 (Psychol B) 
22  (Psychol Rev)  20 (Perc Psychophy) 
2  (Perc Mot Sk)  19 ( MBR) 

 

There are more distortions in projection in the left region of the two - dimensional plot: 

Pints19 (MBR), 21 (Psychol B) and 22. (Psychol Rev) seem to be the main trouble spots. 

Finally, five largest distortions in inter-point distances were computed, which reveal that the 

distances of Math Soc Sc from Ann Stat, Biometrics, Biometrika, JASA and JRSS are 

maximally distorted.  

Small distortions do not have much impact, and can be ignored, but particularly large 

distortions can threaten the cluster configuration. Again, intra-cluster distortions are less 

serious than inter-cluster distortions. Consider the point representing Math  Soc Sc, 

belonging to Cluster 3.  It has very large distance distortions from several journals belonging 

to Cluster 1. This implies that Math Soc Sc is quite misplaced in the two-dimensional plot.  If 

this journal is shifted eastward., not only its distance distortions from Ann Stat, Biometrics, 

Biometrika, JASA and JRSS  would decrease, but also the  crossing of lines in the left region 



 

 

of the MDS map would disappear. It may be recalled that Math Soc Sc was assigned to 

Cluster 3 with very low probability (0.3972). Silhouette value for this journal is also quite 

low (0.0975), suggesting that this journal could as well be assigned to its nearest neighbour 

(Cluster 2).  

 

6  Concluding remarks 

Cluster analysis and projection techniques like PCA, MDS and self organizing maps are essential 

components of the toolkits commonly used for mapping of science. Hierarchical and non-

hierarchical clustering techniques are based on the assumption that clusters have sharp 

boundaries.  This assumption is rather restrictive when we take into account interactions 

between and intermingling of various domains and sub-domains of science. In this respect, 

fuzzy cluster analysis has potential advantages over other techniques, but its interpretation is not 

straightforward.  

Choosing the optimal number of clusters and the quality of cluster structure are other issues, 

which have largely been ignored in the mapping of science. The algorithm used for fuzzy 

clustering (FANNY) offers the possibility of addressing these issues. 

 Experience has shown that substantive results of fuzzy clustering algorithm (FANNY) and 

crisp clustering algorithm, such as PAM (Partition Around Medoids), are generally the same. 

(Nagpaul, 2001).  In the present case, PAM and FANNY issued the same cluster structure. 

Compared to crisp clustering, fuzzy clustering provides important insights into the cluster 

configuration. It indicates the extent of fuzziness of the cluster structure, and also identifies the 

journals (or other bibliometric entities) that may be arbitrarily or wrongly assigned to their 

nearest crisp cluster.  Further, one can assess whether the fuzziness of a knowledge domain has 

increased or decreased over a certain time-span and detect changes in assignment probabilities 

of different bibliometric entities to their nearest crisp cluster. 

Projection techniques tend to preserve as faithfully as possible the original structure of the high-

dimensional data, but some distortions are inevitable, which may result in potentially misleading 

plots. In this paper, an attempt has been made to assess distortions in projection and their 

implications for mapping of knowledge structures.  
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         Table 1 Summary of Fuzzy Cluster Analysis 

     

NUMBER OF        AVERAGE          AVERAGE  
CLUSTERS            DISTANCE         SILHOUETTE    F (U)       FC (U)        D (U)    
DC (U) 

2                  2.514281      0.386041 0.5811 0.1622 0.2132 0.4264 
    3                  1.612188      0.472881 0.4723 0.2085 0.2389 0.3584 
    4                  1.205258      0.311289 0.3543 0.1391 0.4087 0.5449 
    5                  0.972188      0.259175 0.2774 0.0967 0.5477 0.6847 
    6                  0.806085      0.189297 0.2374 0.0849 0.6142 0.7371 
    7                  0.692300      0.199846 0.2489 0.1238 0.5665 0.6610 
    8                 0.601054      -0.958333 0.2516 0.1446 0.5519 0.6307 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
Table 2 Membership coefficients of journals for different clusters 
 

JOURNAL           NEAREST CRISP             PROBABILITY OF 
MEMBERSHIP 
                       CLUSTER            CLUS 1        CLUS 2      CLUS  3 
1  Psychometrika 2 0.2612 0.5367 0.2020  
2  Perc Mot Sk 3 0.1405 0.2413 0.6182  
3  App Psy Meas 2 0.1557 0.6221 0.2222  
4  Ann Rev Psy 3 0.1291 0.2148 0.6560  
5  Ann Stat 1 0.6960 0.1676 0.1364  
6  App Stat 1 0.7560 0.1371 0.1069  
7 Biometrics 1 0.6981 0.1674 0.1344  
8 Biometrika  1 0.7550 0.1349 0.1101  
9 Br J Math Stat Psy 2 0.1469 0.6686 0.1845  
10 Com Stat 1 0.7015 0.1694 0.1291  
11 Edu Psy Meas 2 0.1803 0.5251 0.2946  
12 JASA 1 0.7063 0.1602 0.1335  
13 J Class 2 0.2054 0.5673 0.2273  
14  J Edu Meas 2 0.2012 0.5229 0.2760  
15  J Edu Stat 2 0.2201 0.5659 0.2140  
16  J Math Psy 3 0.1342 0.2045 0.6613  
17  JRSS (B) 1 0.7538 0.1368 0.1094  
18 Math Soc Sc 3 0.2544 0.3483 0.3972  
19 MBR 2 0.1402 0.5539 0.3059  
20 Perc Psychophy 3 0.1617 0.2299 0.6084  
21 Psychol B 3 0.1258 0.1979 0.6763  
22 Psychol Rev 3 0.1442 0.2321 0.6237  
23 SMR 2 0.2259 0.5066 0.2675  
24 Statisticia 1 0.5305 0.2809 0.1886  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
        
          
         
        Table 3 Silhouette values and silhouette bars  

   
JOURNAL  NEAREST CRISP  MEMBERSHIP      SILHOUETTE  VALUE                
SILHOUETTE BAR 
                                              CLUSTER PROBABILITY          
App Stat                          1   0.7560 0.6875 |IIIIIIIIIIIIIIIIIIIII
Biometrika                          1   0.7550                  0.6939 |IIIIIIIIIIIIIIIIIIIII
JRSS (B)                          1                     0.7538 0.6889 |IIIIIIIIIIIIIIIIIIIII
JASA                          1   0.7063 0.6530 |IIIIIIIIIIIIIIIIIIII
 Com Stat                           1   0.7015 0.6285 |IIIIIIIIIIIIIIIIIII
Biometrics                          1   0.6981 0.6596 |IIIIIIIIIIIIIIIIIIII
 Ann Statt                          1   0.6960 0.6656 |IIIIIIIIIIIIIIIIIIII
 Statisticia                          1   0.5305                  0.4059 |IIIIIIIIIIII
 Br. J. Math Stat Psy                  2  0.6686 0.5624 |IIIIIIIIIIIIIIIII
 App Psy Meas                          2  0.6221 0.5414 |IIIIIIIIIIIIIIII
 J. Class                          2   0.5673 0.4403 |IIIIIIIIIIIII
 J Edu Stat                          2   0.5659 0.3548 |IIIIIIIIIII
 MBR                          2   0.5539 0.3751 |IIIIIIIIIII
 Psychometrika                          2   0.5367 0.1640 |IIIII 
 Edu Psy Meas                           2                      0.5251 0.3848 |IIIIIIIIIIII
 J Edu Stat                          2   0.5229 0.4135 |IIIIIIIIIIII
 SMR                          2   0.5066 0.3413 |IIIIIIIIII
 Psyol B                          3   0.6763 0.4209 |IIIIIIIIIIIII
 J Math Psy                          3   0.6613 0.5208 |IIIIIIIIIIIIIIII
 Ann Rev Psy                          3   0.6560 0.4239 |IIIIIIIIIIIII
 Psychol Rev                              3   0.6237 0.4046 |IIIIIIIIIIII
 Perc Mot Sk                           3  0.6182 0.3584 |IIIIIIIIIII
 Perc Psy                           3   0.6084 0.4625 |IIIIIIIIIIIIII
 Math Soc Sc                           3   0.3972 0.0975 |III 



 

 

  

 
                     Fig. 1 MDS plot of Mathematical Psychology Journals 
 
                       *Circle colour indicates the nearest crisp cluster to which 
                            the journals  have been assigned. 
. 
                         *Circle size indicates the probability of cluster membership 
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Fig. 2 Superposition of the minimum spanning tree calculated  
          for n-D space  onto the MDS plot 
 

1  Psychometrika              9 Br J Math Stat Psy              17  JRSS (B) 
2  Perc Mot Sk                10 Com Stat                            18 Math Soc Sc                 
3  App Psy Meas             11 Edu Psy Meas                    19 MBR  
4  Ann Rev Psy               12 JASA                                 20 Perc Psychophy             
5  Ann Stat                      13 J Class                                21 Psychol B 
6  App Stat                      14  J Edu Meas                        22 Psychol Rev 
7 Biometrics                    15  J Edu Stat                          23 SMR 
8 Biometrika                   16  J Math Psy                        24 Statisticia 

 
 

 
 
 



 

 

 
 

Fig. 3 Superposition of the minimum spanning tree calculated 
         for the 2-D space onto the MDS plot 
 

 
1  Psychometrika             9 Br J Math Stat Psy              17  JRSS (B) 
2  Perc Mot Sk               10 Com Stat                            18 Math Soc Sc             
3  App Psy Meas            11 Edu Psy Meas                    19 MBR  
4  Ann Rev Psy              12 JASA                                 20 Perc Psychophy        
5  Ann Stat                     13 J Class                                21 Psychol B 
6  App Stat                     14  J Edu Meas                        22 Psychol Rev 
7 Biometrics                   15  J Edu Stat                          23 SMR 
8 Biometrika                   16  J Math Psy                        24 Statisticia 

 
 

  
 


