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Abstract. According to authors like H.E. Stanley and others, growth dynamics of university 
research displays a quantitative behaviour similar to the growth dynamics of firms acting under 
competitive pressure. Features of such a behaviour are probability distributions of annual 
growth rates or the standard deviation of growth rates. We show that a similar statistical 
behaviour can be observed in the growth dynamics of German university enrolments or in the 
growth dynamics of physics and mathematics, both for the 19th century. Since competitive 
pressure was generally weak at that time, interpretations of statistical similarities as to pointing 
to a “firm-like behaviour” are questionable. 

Introduction 

 Growth dynamics of economies is of obvious practical interest, but also in the centre of 

theoretical interest of many economists, beginning already in the 19th century. In the recent 

two decades or so, this interest concentrated on finding clues of chaotic behaviour, as it might 

be visible in fluctuations of economic time series. Growth dynamics of another kind of 

productive activity, namely science, can meanwhile be called a classical topic in 

scientometrics, of course connected with D. deSolla Price‘s investigations on exponential 

growth of that activity‘s output in the last two centuries. For scientometrics and informetrics, 

the recent work on growth dynamics is reviewed by Tabah (1999). With few exceptions (e.g. 

Goffman & Harmon, 1971; Tabah, 1999; Wagner-Döbler, 1998), scientometricians focused 

not so much on growth fluctuations, as economists are used to do, as on general trends of 

science and technology growth and on modelling these trends. 

 Applying statistical physics methods, in a series of articles some authors around H.E. 

Stanley (Boston), mostly coming from physics, recently studied growth dynamics and the 

annual fluctuations of growth rates of firms’ sales, of national economies, and eventually of 

research activities of universities (M.H.R. Stanley et al., 1996; Lee et al., 1998; Plerou et al., 

1999). This work found also interest in scientometrics (Amaral et al., 2001). Among the 

scientometric indicators used were research and development expenditures of United States 

universities, patents issued to U.S. universities, and papers brought out by them, using 

databases, which covered the last or two decades, as a rule. The authors computed the standard 

deviations of the distributions of annual growth rates as a function of the size of the growing 

units and found that they fit to a power-law with an exponent in the range of 0.25. Dividing the 

universities or firms into three groups of small, medium, and large expenditures or sales, 



 

 

respectively, they furthermore found that the logarithmised distributions of growth rates, if 

scaled with the growth rates‘ standard deviation of the corresponding group, „collapsed“ onto a 

single graph of a „tent“ form. These „tents“ are known as doubled-sided exponential or Laplace 

distributions. According to these authors, the distributions of university research growth rates 

obviously display a universal form and a scaling behaviour typical for competitive economic 

activities as they have been analysed e.g. by R. Gibrat, H. Simon, and by themselves. Similar 

results appeared for Canadian and English universities. Stanley et al. interpreted this as to 

possibly reflect increasing competition between funds-seeking universities. From such a view, 

universities exhibit a firm-like behaviour. Immediately after these new insights were 

published, Moed and Luwel (1999) pointed out that strong competition in business implies a 

shortsighted perspective of survival, whereas basic research is connected with a long-term 

vision of growth, according to Moed and Luwel. A vision more associated with the perspective 

of a forester who is thinking in terms of generations than with the perspective of a business, as 

one could say. Thus, Moed and Luwel brought forward the question whether strong 

competition in a „business of research“, as mirrored by scaling behaviour typical for firms, 

might undermine basic research in the long run. This is a question of utmost importance for 

science policy, of course. 

Method and Data 

 In the present paper, in contrast to the work we sketched above, we aim to examine a 

growth dynamics of scientific institutions under quite different economic and socio-political 

circumstances, in a quite different historical period of time. The first half of the 19th century 

was a comparatively static period of time with respect to institutions of higher education and 

scientific activity in Germany, apart from the general fact that Germany, as all countries of that 

century, were the opposite of information or knowledge societies in our modern sense (if it has 

a sense). With regard to competition, we can at least hypothesize that the competition among 

universities for students was low—and may be low even nowadays in Germany, because 

universities are financed by state and not by student fees—, and that the same be valid for 

competition between subfields of science. (That by quantitative terms of migration between 

subfields, even in the 20th century competition between subfields is low, at least in 

mathematics, was shown by Wagner-Döbler, 1998a.) With this in mind, we analysed the 

growth dynamics of student enrolments of all German universities for 1830-1900, of the 34 

most important mathematical fields, and of the 53 most important physics fields, both for 

1800-1900. Data for student enrolments were compiled from a well-known university history 

(Prahl, 1978). They refer to all 21 universities located in the area of the „Deutsches Reich“ in 

its founding year 1871. In order to avoid seasonal effects of winter and summer semesters (with 

more students in winter than in summer, as a rule), two growth rates for each year were 

computed, referring to the preceding winter or summer semester, respectively. 

 Data for mathematics and physics stem from the printed subject indexes of the 

„Catalogue of Scientific Papers 1800-1900“ of the Royal Society of London that were 



 

 

transformed into a machine-readable bibliometric source by Wagner-Döbler and Berg (1996; 

1999). 19th-century mathematics and physics together comprise more than 100,000 papers, 

and these papers were classified for the Index by a group of experts in retrospect in the first 

years of the 20th century. Some mathematical or physics subfields not directly related to 

mathematical or physics research were excluded (e.g., history). 

 As indicators of the growth dynamics of mathematics and physics we use annual counts 

of publications of a field, computed as moving 3-year-averages. For comparative purposes and 

to test the robustness of our computations, in addition numbers of active contributors to the 

fields were used, which can conceived of as an indicator of scientific manpower. Following 

suggestions of Goffman and Harmon (1971), an active contributor to a field is defined as a 

scientist from the year of his first publication until the year of his last contribution to a field 

during the whole time of his or her activity in the field—independent of the amount of activity. 

The indicator shows lower volatility than publication output. One has to bear in mind here that 

many of the mathematical or physics subfields experienced very low publication numbers, 

especially in the first decades of the 19th century. Because the individual last publications of 

authors entering science at the end of the 19th century are not covered by the „Catalogue“ 

increasing with time, we excluded the last 15 years from the computations. (For a graphical 

demonstration of that effect, see Wagner-Döbler & Berg, 1999.) Because the same is valid, at 

least in principle, for the first years of the 19th century for the individual first publications of 

authors, we excluded also the first five years from the computations. In addition, we excluded 

annual values equal or lower than two active contributors or publications because of their 

erratic statistical behaviour.  

 Findings 

 Figure 1 shows the frequency distribution of all enrolments of all semesters for the 

German universities, for better convenience as percentages of all enrolments. The parable— in 

a double-logarithmic scale—corresponds to a lognormal distribution, which is in agreement 

with Gibrat‘s model of firm growth as a multiplicative stochastic process and Gibrat‘s „Law of 

Proportional Growth“. 
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FIG. 1. Frequency distribution of enrolments of all semesters in all German universities 

1830-1900 as percentages of all enrolments. Sources: Raw data from Prahl (1978); own 

computations. Graph fitted according to least squares of logarithmised values. 

 

 In Figure 2 the distribution p(g) of the (decadicly logarithmised) annual growth rates g 

= log[S(t + 1) / S(t)] of enrolments S is displayed with p on a logarithmic scale. The tent form of 

the distribution points to a Laplace distribution of the form  
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with standard deviation σ and average μ, in accordance with results of Stanley et al. We 

performed, in addition, Kolmogorov-Smirnov tests (KS tests) which yield the test statistics 

D√n = 1.95 for the Laplace and D√n = 3.43 for the Gaussian distribution (with the number of 

growth rates n = 2814). So both null hypotheses should be rejected with an error probability 

less than 1% but the test statistics is much more powerful for the Gaussian distribution. In the 

cited papers of Stanley et al. no result of any comparable statistical test is communicated. For 

KS test of Laplace distributions see Puig & Stephens, 2000. 
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FIG. 2. Probability density of growth rates of student enrolments, German universities 

1830-1900. The “tent” is the graph of the Laplace distribution, the parable that of the 

Gaussian distribution, both with standard deviation σ = 0.042 (obtained from data; 

average μ = 0.005 subtracted from data). Sources: See Fig. 1. 

 

 As we see in Figure 3, and in agreement with results of Stanley et al., the standard 

deviation of the growth rates is decreasing with size as a power law σ(S) ~ S−β with β = 

0.29±0.04. There are time differences, however. In the period of university stagnation in 

Germany until 1870 we get β = 0.18±0.09. After 1870 a marked expansion of universities 

started, and we get a steeper curvature β = 0.34±0.04. The fitting is much better than for values 

before 1870 (Figure 4). Therefore, for universities we consider only the period after 1870 in 

what follows. In this period the distribution of growth rates does not conform a Laplace 

distribution, however, rather a Gaussian one. The KS test values with n = 1134 are D√n = 1.62 

for the Gaussian and D√n = 1.85 for the Laplace distribution. 
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FIG. 3. Standard deviation of enrolment growth rates, plotted against enrolment size S. German 

universities 1830-1900. Sources: See Fig. 1. The ten classes have equidistant averages 

on the logarithmic S scale; therefore the points represent classes with different weights 

(s. Fig. 1); the line, however, was obtained by linear regression without weights. 
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FIG. 4. Standard deviation of enrolment growth rates, plotted against enrolment size S. German 

universities 1871-1900. Sources: See Fig. 1. The ten points represent classes of the 

same weight: they all include 113 growth rates. Their S values are the geometric mean 

of their minimum and their maximum value of S. The line was obtained by linear 

regression.  

 

 Now, in agreement with Stanley et al., we choose bigger classes of growth rates than in 



 

 

Figure 3 and calculate the corresponding conditional probability distributions p(g | S) of the 

growth rates. If we partition the rates into three classes of equal size, two of the distributions 

p(g | S) conform the Gaussian distribution (KS test values are smaller than the critical value 

0.89 for 5% error probability); the third one (with lowest values of S) has a better test value for 

the Laplace (1.16) than for the Gaussian distribution (1.59). These findings are in contrast to 

those of Stanley et al. who in all cases communicated that also the conditional distributions 

tend to show the tent shape when plotted on logarithmic scale. 

 We now turn to the two scientific disciplines. The size distribution of the 53 physics 

subfields in the 19th century, indicated through journal articles, is approximately lognormal. 

The probability density of growth rates conforms more to a Laplace than to a Gaussian 

distribution, as Figure 5(a) shows (KS test values 2.67 and 4.14, respectively). The same is true 

for the 34 mathematical subfields, as Figure 5(b) shows (KS test values 2.07 and 3.39, 

respectively). Figure 6 shows that the standard deviations plotted against size of the physics 

and mathematical subfields conform to power laws with β = 0.34±0.03 and β = 0.46±0.02, 

respectively. 
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FIG. 5. The distribution of growth rates of (a) physics and (b) mathematics subfields 

1800-1900 indicated through numbers of papers (see also Fig. 2). Sources: Catalogue 

of Scientific Papers (transformed into databases by Wagner-Döbler and Berg, 1996, 

1999), and own calculations. 
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FIG. 6. Standard deviation of subfield growth rates, plotted against subfield size S: (a) physics 

and (b) mathematics 1800-1900. Sources: See Fig. 5. The 20 points of both disciplines 

represent classes of the same weight: in physics they include 203 growth rates, in 

mathematics 121. Their values on the S axis are geometric means of classes’ minimum 

and maximum value of S. The lines were obtained by linear regression. 

 

The conditional probability distributions p(g | S) of the growth rates of physics and 

mathematics subfields, in both cases divided into three classes of equal size, look more like 

normally and not like Laplace distributed: with the exception of the class of large physical 

subfields all KS test values for the Gaussian distribution are smaller than for the Laplace 

distribution (cf. Figure 7). In the scaled plot (Figure 8) they nonetheless „collapse“ quite well 

onto one single graph, in analogy to the results of Stanley et al. The results of using „active 

contributors“ instead of publications as indicators are not shown here because of lack of space. 

They are in agreement with the results presented here with publications. Here we obtained for 

physical subfields β = 0.51±0.03 (25 classes with 147 rates), and in mathematics β = 0.57±0.03 

(16 classes with 121 rates). For both disciplines the growth rates have Laplace-like 

distributions p(S) and conditional distributions p(g | S) (in three classes), which have smaller 

KS test values for the Gaussian distribution. 
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FIG. 7. Conditional probability distributions p(g | S) of (a) physics and (b) mathematics 



 

 

subfields growth rates g of three classes in each discipline. The classes include each 

about 1360 rates in physics and about 800 rates in mathematics. 
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FIG. 8. Scaled plots of the distributions of Fig. 7: (a) physics, (b) mathematics. 

 

Discussion 

 We demonstrated that the same apparently universal statistical behaviour of growth 

rates is yielded for the growth dynamics of student enrolments and of scientific activity in the 

19th century as in the works of Stanley et al. regarding university research at the end of the 20th 

century. An exception is the not Laplace but rather normally distributed probability 

distributions of university enrolments in Germany after 1870. A further difference is, that in 

nearly all cases analysed by us the conditional distributions p(g | S) (constructed as in the 

Stanley papers) show also a more normal than a Laplace-like form. We think, however, that 

these are nonessential differences. In which cases Laplace distributions (as observed by 

Stanley et al., and in some cases also by us) appear will be discussed in a further paper. 

 Obviously, weak competitive structures of the 19th century lead to similar quantitative 

behaviour of growth dynamics as the strong competitive conditions, which are said to prevail at 

the end of the 20th century. Consequently, any interpretations of the 20th-century results cited 

above which refer to competitive structures of research activities are built on weak ground 

insofar (correct however the claims as such may be, and independent from our agreement with 

them). But we cannot find, in addition, that competition is defined precisely and that 

convincing indicators for it were presented so far, at least in scientometrics. Thus we interpret 

the characteristics of the growth dynamics as reflections of self-organization of complex 

institutions and communities. We intend to perform a comparative analysis of the growth 

dynamics of research activities before and after the „Wende“ in countries of the former 

socialist block. It has the aim to compare growth dynamics of the same system under quite 

different economic regimes. 

 Finally we point out that other quantitative similarities between the time-behaviour of 



 

 

economic activities and research activities over centuries (Wagner-Döbler, 1998), and 

economic activities and education system development over the last two centuries 

(Müller-Benedict, 1991) are apparent: their cyclical or quasi-cyclical character at least on a 

time scale of years and of decades, respectively. To be sure, the different characteristics of 

different phases of development of areas under examinations have to be paid more attention 

(cf. Sutton, 2002, p. 580). For mathematical logic, at least, Goffman and Harmon (1971) 

interpreted those different phases as recurring waves of epidemics. 
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